Prediction of Bike Sharing Demand Considering
Built Environment & Natural Factors:
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This research focuses on the dockless bike sharing system in Shenzhen, using 7
integrated datasets, including trip records, weather, temporal variances, and built
environment data. The OLS model is employed as the baseline model, while
XGBoost, Random Forest, DNN, and LSTM are further trained and ensembled into
an aggregated model weighted by each model’s R-squared performance. To enhance
interpretability, SHAP analysis is applied to quantify the contribution and
interaction of key features, centering on hour and people flow. Beyond prediction,
this research also introduces two novel indices, the Demand Volatility Index (DVI)
and the Peak Demand Index (DPI), which are combined into a unified Demand
Coordination Priority Index (DCPI). Using the natural break classification,
spatiotemporal maps are created to visualize weekday and weekend usage patterns.
Based on these findings, this research reveals the different driving factors deciding
the bike sharing demand and concludes the different travel patterns of weekdays
and weekends.

1. Introduction use public transport®. Research confirms that

The 21st century is defined by a rapid
global shift towards urbanization, which,
while driving economic growth, places great

pressure on urban infrastructure. By 2050, 68%

of the world's population is expected to live in
cities, an increase of 2.5 billion people from
2018, with this growth concentrated in Asia
and Africal?. The velocity of this urban influx
often outpaces infrastructure planning,
leading to a foundational bias towards car-
dependent development and urban sprawl?.
This situation, characterized by low-
density and spatially fragmented land use,
systemically increases trip lengths and
undermines the efficiency of high-capacity
public transport?. This creates the “first-
mile/last-mile” problem, as the challenge of
connecting a traveler's origin or destination to
a public transit hub?®. This accessibility gap is
an important barrier to public transport
vitalization, as spatial accessibility is a crucial
factor in a traveler's willingness and choice to

many cities are facing the first-mile and last-
mile dilemma?.

To address this crisis, innovative shared
mobility services have emerged as a key
solution. Bike Sharing Systems (BSS), in
particular, offer a convenient and low-cost
option for trips that are too long to walk but
too short to drive, effectively extending the
accessibility of public transport and bridging
the last-mile gap8919,

A Bike Sharing System (BSS) provides
public access to shared bicycles in an urban
environment!?, Since its inception in 1965,
the BSS has evolved through four distinct
generations, incorporating  technological
advancements to improve management and
usability. The fourth generation,
characterized by QR code access, GPS
tracking, and free-floating systems (FFBS),
has seen explosive growth around the world,
particularly in China, where users grew from
28 million in 2016 to 287 million in 202012,



To address the vehicle dispatching
challenges in BSS operations caused by
supply-demand mismatches, this research
aims to develop and evaluate a high-precision
hybrid model for spatio-temporal demand
forecasting. This model will provide operators
with data-driven decision support to enhance
user satisfaction. The study will also identify
key external factors (time, weather, urban
context), construct and train multiple
machine learning and deep learning models,
and then develop a superior aggregate model.
Using explainable AI, the study will also
identify key demand patterns to suggest
practical strategies.

This study is significant as it addresses a
critical challenge in sustainable urban
mobility, aligning with global priorities to
improve transport accessibility and social
equity!314. By analyzing a large-scale dataset
from Shenzhen, a hyper-dense and rapidly
urbanizing megacity, this research develops
an interpretable predictive framework to
support evidence-based policy planning. The
findings offer practical insights for
governments and mobility providers in similar
Asian megacities facing complex mobility
transitions.

2. Literature Review

Bike sharing systems (BSS) are recognized
for addressing the "last-mile" problem by
enhancing the connectivity of public transport
networks!®. This integration yields not only
mobility benefits but also positive economic
impacts, such as mitigating the negative effect
of distance from subway stations on housing
prices'®, and significant environmental gains
through reduced carbon emissions!”19,
However, the primary operational challenge
remains the spatio-temporal imbalance of
bicycle distribution, driven by the tidal nature
of urban commutes!?. This mismatch between
supply and demand leads to service failures,
necessitating manual intervention through a
process called rebalancing. Rebalancing is a
complex and costly combinatorial
optimization problem, which is hard and
particularly  challenging  for  dockless

systems2?. Consequently, accurate demand
prediction is crucial for efficient and cost-
effective rebalancing operations.

The methodologies for BSS demand
prediction have evolved significantly,
progressing from classical statistical and
time-series models like ARIMA to more
sophisticated approaches??. While early
models struggled to capture complex spatial
relationships and external factors??, machine
learning algorithms such as K-Nearest
Neighbors (KNN), Random Forest (RF), and
XGBoost demonstrated superior performance
by incorporating non-linear relationships and
various exogenous factors2®. More recently,
deep learning models have become prominent
due to their ability to capture deep spatio-
temporal dependencies. Some models, like
Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), excel at modeling
temporal patterns, while Convolutional
Neural Networks (CNN) and Graph Neural
Networks (GNN) are used for spatial
correlations2425, Hybrid models, such as the
CNN-LSTM, have been developed to capture
these dependencies simultaneously, leading to
higher prediction accuracy?26.

Despite their high accuracy, the complexity
of advanced machine learning and deep
learning models often renders them "black
boxes," hindering their practical application in
high-stakes operational decision-making due
to a lack of transparency and trust27.2®. To
address this, Explainable AI (xAI) techniques
have emerged to enhance model
interpretability while maintaining
performance2?. Among various xAl methods,
Local Interpretable Model-agnostic
Explanations (LIME) and Shapley Additive
exPlanations (SHAP) are prominent ones.
LIME provides local explanations for
individual predictions but can miss non-linear
relationships3?. SHAP, grounded in
cooperative game theory, offers a more robust
and unified approach by calculating the
contribution of each feature to a prediction3?.
Its proven compatibility with a wide range of
models, including XGBoost, RF, and deep
neural networks, makes it a powerful tool for



building trust and enabling informed, data-
driven decisions in BSS operations32:33.34,

3. Methodology and Calculation

This research was conducted in Shenzhen,
a rapidly growing Chinese megacity
recognized as a pilot for smart and green
transportation. The study integrates seven
heterogeneous  datasets—including  bike
travel, weather, population heatmaps, Areas
of Interest (AOI), and public transport
locations—to create a multidimensional
profile of urban mobility. The core dataset
comprises around 250 million bike-sharing
trip records, mainly from January to August
2021, sourced from the Shenzhen government.

To unify these multi-source datasets for
analysis, Shenzhen's administrative area was
divided into a grid system of 4,233 cells, each
approximately 1.23 km by 1.23 km. All data
were spatially aggregated to this grid level.
Raw bike travel data are filtered to ensure
quality, restricting records including selected
time period, geographical areas, plausible
travel distance, and excluding data from
COVID-19 lockdown zones. Extensive feature
engineering was performed to create a unified
dataset for modeling. Temporal features (e.g.,
minute, hour, day of the week, month), dummy
features (weekends or not, festival or not)
weather data (temperature, humidity, wind,
precipitation), and urban environmental
factors (number of bus/subway stops,
standardized people flow, and AOI diversity
grade) were generated and assigned to each
grid for every 20-minute time interval.

The modeling process began with an
Ordinary Least Squares (OLS) model as a
baseline, which performed poorly (R? = 0.29),
confirming the presence of complex non-linear
relationships in the data. Subsequently, four
advanced models were developed, including
two machine learning models (XGBoost,
Random Forest) and two deep learning models
(Deep Neural Network, Long Short-Term
Memory). Due to data sparsity after filtering
zero-demand records, the dataset was treated
as a cross-section, and a random 80/20 split
was used for training and testing. Model

performance was evaluated using Mean
Squared Error (MSE), Mean Absolute Error
(MAE), and R-squared (R?).

Table 1: An example of table

Model| MSE MAE R-Square
0LS 2368.90 | 27.07 0.29
XGBoost | 1298.50 | 17.25 0.67
Random | 4 458 53 | 17.84 0. 64
Forest
DNN 1512.83 | 18.94 0.62
LSTM | 1554.72 | 20.02 0.61
Aeereeate | 1500 a3 | 17.05 | 0.675
Mode |

All four models significantly outperformed
the OLS baseline, with the tree-based
XGBoost model demonstrating the highest
accuracy. To leverage the strengths of each, a
final aggregated model was constructed using
a weighted ensemble method. This integrated
model achieved the best overall performance,
with an MSE of 1292.33, an MAE of 17.05, and
an R? of 0.675. This final model was then used
for interpretation with the SHAP framework.

4. SHAP Analysis

Based on the result of the models, this
research employed the SHAP method to
interpret the interactions, identifying the key
drivers of bike sharing demands and also the
inner relationship between specific
independent variables.

SHAP Model Importance with Contribution(sé)

Figure 1: SHAP model global importance



For the global feature importance analysis,
Hour is unequivocally the most dominant
feature, with its contribution reaching 22.45%,
which is far exceeding others, suggesting the
decisive role of intraday temporal rhythms in
shaping travel demands. Others, including
PeopleflowS (standardized people flow, with
16.95% contribution), AOI value (area
function mix index, with 16.05% contribution),
Number of subway stations (with 13.74%
contribution), constitute the core engine (over
70% contribution in total). However, some
features, like precipitation, festival or not, and
weekends or not, are far from expectations,
with the first two due to the data shortage,
and the last one due to being strongly
captured by the feature day of the week.
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Figure 2: The SHAP dependence plot of day of

the week colored by hour

Further interaction analysis revealed the
dynamic nature of these feature impacts.
Figure 2 demonstrates the strong interaction
between Hour and Day of the Week. Weekday
(0-4) demand exhibits a typical bimodal
commuting pattern, with the strongest
positive effect on demand occurring during
morning and evening peak hours (red points).
In contrast, overall demand is lower on
weekends (5-6) (negative SHAP values), with
a more subdued, unimodal peak in the
afternoon. This plot clearly quantifies the
difference between commute-driven and
leisure-driven travel patterns.
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Figure 3: The SHAP dependence plot of people

flow colored by hour

Other factors are similarly modulated by
time and people flow. This figure 3 mainly
focuses on the interaction of peopleflowS
(standardized people flow) and hour (variation
within one day), confirming that the demand-
boosting effect is significantly amplified
during peak hours compared to non-peak
hours at any given level of people flow. This
figure strongly argues against the constant or
simple fully people-flow-based redistribution
strategy. Instead, a time-weighted
redistribution approach could be much better,
as resources should be disproportionately
allocated to manage high people flow during
peak commuting periods because of the
highest availability to critical demands in this
scenario.

This section mainly does analysis
centering the global contribution, the
relationship of temporal features with others,
and the relationship of people flow with others.

5. Traveling Analysis

To translate raw demand predictions into
actionable redistribution strategies, two novel
indices were developed: the Demand Volatility
Index (DVI), which captures the temporal
fluctuation of demand in a grid from the
coefficient of variance in statistics, and the
Demand Peak Index (DPI), which measures
the strength of peak demand relative to the
daily average from the peak hour factor in
transport engineering. These indices quantify



a grid's stability and peak-hour pressure,
respectively. A composite Demand
Coordination Priority Index (DCPI) was
created by combining DVI and DPI with equal
weighting. Using the Natural Breaks (Jenks)
method, all grids were classified into five
priority levels (from "very stable" to "highly
active") based on their DCPI scores. This
classification was performed separately for
different time slots on weekdays (morning
peak, daytime, evening peak, night, and late
night) and weekends (morning, high demand
period, night, and late night), enabling the
development of targeted, time-sensitive
redistribution plans based on the different use
patterns and inherent characteristics in
different time periods.
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Figure 4: The bike sharing demands on

weekdays (Morning Peak)

Figure 4 displays the redistribution
priority during the weekday morning peak
(7:30-9:29), clearly capturing the city's "tidal"
commute characteristics. Highly active areas
(in red) are concentrated in core employment
hubs like Nanshan High-Tech Park and major
residential sub-centers such as Bao'an and
Longhua, forming busy transport corridors
along subway lines. This visually confirms the
critical role of bike-sharing in bridging the
"last-mile" gap between homes and metro
stations, indicating that redistribution efforts
should be deployed along the "residence-
metro-workplace" commuter chain.
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Figure 5: The bike sharing demands on

weekends (Morning)

In stark contrast, the weekend morning
(Figure 5) reveals a fundamentally different
urban rhythm. Instead of a unified tidal flow,
demand is decentralized and emerges in
scattered, local hotspots. These active areas
are no longer dominated by commuter hubs
but are instead linked to traditional business
districts (Luohu), cross-border checkpoints
(Futian), and emerging commercial centers.
Trip purposes diversify significantly from
commuting to leisure, targeting shopping
malls, parks, and cultural venues. This
reflects a clear behavioral shift from the
individual, efficiency-driven  travel of
weekdays to group-oriented, experience-
driven mobility, where travel destinations are
more varied and less predictable.

Based on the analysis of weekday and
weekend patterns, there are clear differences
in flow dynamics, temporal rhythms,
geographical hotspots, and travel motivations.
On weekdays, the dominant pattern is a tidal
flow between peripheral residential areas and
central employment hubs, forming a
predictable loop: residents move from suburbs
to the core in the morning and return in the
evening. In contrast, weekend flows are highly
decentralized and event-driven, spreading
from multiple residential points toward
several popular hotspots and later dispersing
back to scattered neighborhoods. Temporally,



weekdays exhibit two sharp and intense peaks
corresponding to morning and evening
commutes, whereas weekends start later and
feature a longer, continuous peak from early
afternoon to late evening. Geographically,
weekday hotspots are concentrated around
major employment centers, such as the Futian
CBD and Nanshan High-Tech Park, while
during weekends, these same complexes
transform into leisure and shopping
destinations. In terms of motivation, weekday
trips are mainly driven by productive
activities (e.g., work), showing high rigidity
and time sensitivity, whereas weekend travel
is largely driven by consumption-oriented
activities (e.g., leisure and shopping) and
tends to be more flexible.

5. Conclusion, Discussion, and Future Work
This study employs an explainable
ensemble of two machine learning and two
deep learning models to reveal the
mechanisms behind bike-sharing demand
dynamics. Results show that demand and
imbalance issues arise from the interaction of
temporal, spatial, and activity factors rather
than any single driver. Hour is the most
influential variable, shaping commuting-
driven weekday peaks and flexible leisure-
oriented  weekend  patterns. Subway
accessibility and AOI_value strongly affect
demand, underscoring the role of bike sharing
in last-mile connectivity and the importance of
functional diversity over population size.
People flow has a direct positive impact, but is
amplified by peak periods and mixed-use
areas. Temperature effects are non-linear,
benefiting demand within optimal ranges.
Weekday flows follow predictable tidal
commuting patterns, while weekend demands
are more scattered around leisure hotspots.
These findings highlight the need for

integrated rebalancing strategies that
consider  time, space, and  activity
simultaneously.

Academically, this study contributes by
quantifying the complex synthesis between
the built environment and travel behavior,
moving beyond linear assumptions to reveal

how the marginal impact of factors like people
flow is amplified during peak hours and in
functionally diverse areas. Practically, these
findings offer actionable insights for urban
planners and operators. Key policy
recommendations include: prioritizing
development within a 500-800m buffer of
subway stations to maximize public transport
integration, identifying stable, high-demand
zones for targeted infrastructure investment,
such as dedicated parking, charging stations,
and protected bike corridors connecting key
hubs, and establishing a government-led
platform for information sharing.

The study also acknowledges its
limitations, primarily the challenge of
inferring causality from correlational data
(e.g., the endogeneity between subway
stations and demand), data scarcity for
certain variables like precipitation, and the
single-city focus, which requires further
validation for generalizability. Future work
should therefore focus on incorporating real-
time transport data to capture dynamic
substitution  effects, exploring causal
inference through natural experiments (e.g.,
using DID or RDD methods to analyze the
impact of new metro lines), and extending the
analysis to other shared mobility modes to
support the development of integrated
Mobility-as-a-Service (MaaS) systems.
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