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This research focuses on the dockless bike sharing system in Shenzhen, using 7 
integrated datasets, including trip records, weather, temporal variances, and built 
environment data. The OLS model is employed as the baseline model, while 
XGBoost, Random Forest, DNN, and LSTM are further trained and ensembled into 
an aggregated model weighted by each model’s R-squared performance. To enhance 
interpretability, SHAP analysis is applied to quantify the contribution and 
interaction of key features, centering on hour and people flow. Beyond prediction, 
this research also introduces two novel indices, the Demand Volatility Index (DVI) 
and the Peak Demand Index (DPI), which are combined into a unified Demand 
Coordination Priority Index (DCPI). Using the natural break classification, 
spatiotemporal maps are created to visualize weekday and weekend usage patterns. 
Based on these findings, this research reveals the different driving factors deciding 
the bike sharing demand and concludes the different travel patterns of weekdays 
and weekends. 
 
1. Introduction 
   The 21st century is defined by a rapid 
global shift towards urbanization, which, 
while driving economic growth, places great 
pressure on urban infrastructure. By 2050, 68% 
of the world's population is expected to live in 
cities, an increase of 2.5 billion people from 
2018, with this growth concentrated in Asia 
and Africa1,2). The velocity of this urban influx 
often outpaces infrastructure planning, 
leading to a foundational bias towards car-
dependent development and urban sprawl3). 
   This situation, characterized by low-
density and spatially fragmented land use, 
systemically increases trip lengths and 
undermines the efficiency of high-capacity 
public transport4). This creates the “first-
mile/last-mile” problem, as the challenge of 
connecting a traveler's origin or destination to 
a public transit hub5). This accessibility gap is 
an important barrier to public transport 
vitalization, as spatial accessibility is a crucial 
factor in a traveler's willingness and choice to 

use public transport6). Research confirms that 
many cities are facing the first-mile and last-
mile dilemma7). 
   To address this crisis, innovative shared 
mobility services have emerged as a key 
solution. Bike Sharing Systems (BSS), in 
particular, offer a convenient and low-cost 
option for trips that are too long to walk but 
too short to drive, effectively extending the 
accessibility of public transport and bridging 
the last-mile gap8,9,10). 
   A Bike Sharing System (BSS) provides 
public access to shared bicycles in an urban 
environment11). Since its inception in 1965, 
the BSS has evolved through four distinct 
generations, incorporating technological 
advancements to improve management and 
usability. The fourth generation, 
characterized by QR code access, GPS 
tracking, and free-floating systems (FFBS), 
has seen explosive growth around the world, 
particularly in China, where users grew from 
28 million in 2016 to 287 million in 202012). 



   To address the vehicle dispatching 
challenges in BSS operations caused by 
supply-demand mismatches, this research 
aims to develop and evaluate a high-precision 
hybrid model for spatio-temporal demand 
forecasting. This model will provide operators 
with data-driven decision support to enhance 
user satisfaction. The study will also identify 
key external factors (time, weather, urban 
context), construct and train multiple 
machine learning and deep learning models, 
and then develop a superior aggregate model. 
Using explainable AI, the study will also 
identify key demand patterns to suggest 
practical strategies. 
   This study is significant as it addresses a 
critical challenge in sustainable urban 
mobility, aligning with global priorities to 
improve transport accessibility and social 
equity13,14). By analyzing a large-scale dataset 
from Shenzhen, a hyper-dense and rapidly 
urbanizing megacity, this research develops 
an interpretable predictive framework to 
support evidence-based policy planning. The 
findings offer practical insights for 
governments and mobility providers in similar 
Asian megacities facing complex mobility 
transitions. 
 
2. Literature Review  
   Bike sharing systems (BSS) are recognized 
for addressing the "last-mile" problem by 
enhancing the connectivity of public transport 
networks15). This integration yields not only 
mobility benefits but also positive economic 
impacts, such as mitigating the negative effect 
of distance from subway stations on housing 
prices16), and significant environmental gains 
through reduced carbon emissions17,18).       
However, the primary operational challenge 
remains the spatio-temporal imbalance of 
bicycle distribution, driven by the tidal nature 
of urban commutes19). This mismatch between 
supply and demand leads to service failures, 
necessitating manual intervention through a 
process called rebalancing. Rebalancing is a 
complex and costly combinatorial 
optimization problem, which is hard and 
particularly challenging for dockless 

systems20). Consequently, accurate demand 
prediction is crucial for efficient and cost-
effective rebalancing operations. 
   The methodologies for BSS demand 
prediction have evolved significantly, 
progressing from classical statistical and 
time-series models like ARIMA to more 
sophisticated approaches21). While early 
models struggled to capture complex spatial 
relationships and external factors22), machine 
learning algorithms such as K-Nearest 
Neighbors (KNN), Random Forest (RF), and 
XGBoost demonstrated superior performance 
by incorporating non-linear relationships and 
various exogenous factors23). More recently, 
deep learning models have become prominent 
due to their ability to capture deep spatio-
temporal dependencies. Some models, like 
Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU), excel at modeling 
temporal patterns, while Convolutional 
Neural Networks (CNN) and Graph Neural 
Networks (GNN) are used for spatial 
correlations24,25). Hybrid models, such as the 
CNN-LSTM, have been developed to capture 
these dependencies simultaneously, leading to 
higher prediction accuracy26). 
   Despite their high accuracy, the complexity 
of advanced machine learning and deep 
learning models often renders them "black 
boxes," hindering their practical application in 
high-stakes operational decision-making due 
to a lack of transparency and trust27,28). To 
address this, Explainable AI (xAI) techniques 
have emerged to enhance model 
interpretability while maintaining 
performance29). Among various xAI methods, 
Local Interpretable Model-agnostic 
Explanations (LIME) and Shapley Additive 
exPlanations (SHAP) are prominent ones. 
LIME provides local explanations for 
individual predictions but can miss non-linear 
relationships30). SHAP, grounded in 
cooperative game theory, offers a more robust 
and unified approach by calculating the 
contribution of each feature to a prediction31). 
Its proven compatibility with a wide range of 
models, including XGBoost, RF, and deep 
neural networks, makes it a powerful tool for 



building trust and enabling informed, data-
driven decisions in BSS operations32,33,34). 
 
3. Methodology and Calculation 
   This research was conducted in Shenzhen, 
a rapidly growing Chinese megacity 
recognized as a pilot for smart and green 
transportation. The study integrates seven 
heterogeneous datasets—including bike 
travel, weather, population heatmaps, Areas 
of Interest (AOI), and public transport 
locations—to create a multidimensional 
profile of urban mobility. The core dataset 
comprises around 250 million bike-sharing 
trip records, mainly from January to August 
2021, sourced from the Shenzhen government. 
   To unify these multi-source datasets for 
analysis, Shenzhen's administrative area was 
divided into a grid system of 4,233 cells, each 
approximately 1.23 km by 1.23 km. All data 
were spatially aggregated to this grid level. 
Raw bike travel data are filtered to ensure 
quality, restricting records including selected 
time period, geographical areas, plausible 
travel distance, and excluding data from 
COVID-19 lockdown zones. Extensive feature 
engineering was performed to create a unified 
dataset for modeling. Temporal features (e.g., 
minute, hour, day of the week, month), dummy 
features (weekends or not, festival or not) 
weather data (temperature, humidity, wind, 
precipitation), and urban environmental 
factors (number of bus/subway stops, 
standardized people flow, and AOI diversity 
grade) were generated and assigned to each 
grid for every 20-minute time interval.  
   The modeling process began with an 
Ordinary Least Squares (OLS) model as a 
baseline, which performed poorly (R² = 0.29), 
confirming the presence of complex non-linear 
relationships in the data. Subsequently, four 
advanced models were developed, including 
two machine learning models (XGBoost, 
Random Forest) and two deep learning models 
(Deep Neural Network, Long Short-Term 
Memory). Due to data sparsity after filtering 
zero-demand records, the dataset was treated 
as a cross-section, and a random 80/20 split 
was used for training and testing. Model 

performance was evaluated using Mean 
Squared Error (MSE), Mean Absolute Error 
(MAE), and R-squared (R²). 
 

Table 1: An example of table 

Model MSE MAE R-Square 

OLS 2368.90 27.07 0.29 

XGBoost 1298.50 17.25 0.67 

Random 

Forest 
1438.23 17.84 0.64 

DNN 1512.83 18.94 0.62 

LSTM 1554.72 20.02 0.61 

Aggregate 

Model 
1292.33 17.05 0.675 

 
   All four models significantly outperformed 
the OLS baseline, with the tree-based 
XGBoost model demonstrating the highest 
accuracy. To leverage the strengths of each, a 
final aggregated model was constructed using 
a weighted ensemble method. This integrated 
model achieved the best overall performance, 
with an MSE of 1292.33, an MAE of 17.05, and 
an R² of 0.675. This final model was then used 
for interpretation with the SHAP framework. 
  
4. SHAP Analysis 
   Based on the result of the models, this 
research employed the SHAP method to 
interpret the interactions, identifying the key 
drivers of bike sharing demands and also the 
inner relationship between specific 
independent variables. 
 

 
Figure 1: SHAP model global importance 



   For the global feature importance analysis, 
Hour is unequivocally the most dominant 
feature, with its contribution reaching 22.45%, 
which is far exceeding others, suggesting the 
decisive role of intraday temporal rhythms in 
shaping travel demands. Others, including 
PeopleflowS (standardized people flow, with 
16.95% contribution), AOI_value (area 
function mix index, with 16.05% contribution), 
Number of subway stations (with 13.74% 
contribution), constitute the core engine (over 
70% contribution in total). However, some 
features, like precipitation, festival or not, and 
weekends or not, are far from expectations, 
with the first two due to the data shortage, 
and the last one due to being strongly 
captured by the feature day of the week. 
 

 
   Further interaction analysis revealed the 
dynamic nature of these feature impacts. 
Figure 2 demonstrates the strong interaction 
between Hour and Day of the Week. Weekday 
(0-4) demand exhibits a typical bimodal 
commuting pattern, with the strongest 
positive effect on demand occurring during 
morning and evening peak hours (red points). 
In contrast, overall demand is lower on 
weekends (5-6) (negative SHAP values), with 
a more subdued, unimodal peak in the 
afternoon. This plot clearly quantifies the 
difference between commute-driven and 
leisure-driven travel patterns.  

 

 
   Other factors are similarly modulated by 
time and people flow. This figure 3 mainly 
focuses on the interaction of peopleflowS 
(standardized people flow) and hour (variation 
within one day), confirming that the demand-
boosting effect is significantly amplified 
during peak hours compared to non-peak 
hours at any given level of people flow. This 
figure strongly argues against the constant or 
simple fully people-flow-based redistribution 
strategy. Instead, a time-weighted 
redistribution approach could be much better, 
as resources should be disproportionately 
allocated to manage high people flow during 
peak commuting periods because of the 
highest availability to critical demands in this 
scenario. 
   This section mainly does analysis 
centering the global contribution, the 
relationship of temporal features with others, 
and the relationship of people flow with others.  
 
5. Traveling Analysis 
   To translate raw demand predictions into 
actionable redistribution strategies, two novel 
indices were developed: the Demand Volatility 
Index (DVI), which captures the temporal 
fluctuation of demand in a grid from the 
coefficient of variance in statistics, and the 
Demand Peak Index (DPI), which measures 
the strength of peak demand relative to the 
daily average from the peak hour factor in 
transport engineering. These indices quantify 

Figure 2: The SHAP dependence plot of day of 

the week colored by hour 

Figure 3: The SHAP dependence plot of people 

flow colored by hour 



a grid's stability and peak-hour pressure, 
respectively. A composite Demand 
Coordination Priority Index (DCPI) was 
created by combining DVI and DPI with equal 
weighting. Using the Natural Breaks (Jenks) 
method, all grids were classified into five 
priority levels (from "very stable" to "highly 
active") based on their DCPI scores. This 
classification was performed separately for 
different time slots on weekdays (morning 
peak, daytime, evening peak, night, and late 
night) and weekends (morning, high demand 
period, night, and late night), enabling the 
development of targeted, time-sensitive 
redistribution plans based on the different use 
patterns and inherent characteristics in 
different time periods. 
 

 
   Figure 4 displays the redistribution 
priority during the weekday morning peak 
(7:30-9:29), clearly capturing the city's "tidal" 
commute characteristics. Highly active areas 
(in red) are concentrated in core employment 
hubs like Nanshan High-Tech Park and major 
residential sub-centers such as Bao'an and 
Longhua, forming busy transport corridors 
along subway lines. This visually confirms the 
critical role of bike-sharing in bridging the 
"last-mile" gap between homes and metro 
stations, indicating that redistribution efforts 
should be deployed along the "residence-
metro-workplace" commuter chain. 

 

 
   In stark contrast, the weekend morning 
(Figure 5) reveals a fundamentally different 
urban rhythm. Instead of a unified tidal flow, 
demand is decentralized and emerges in 
scattered, local hotspots. These active areas 
are no longer dominated by commuter hubs 
but are instead linked to traditional business 
districts (Luohu), cross-border checkpoints 
(Futian), and emerging commercial centers. 
Trip purposes diversify significantly from 
commuting to leisure, targeting shopping 
malls, parks, and cultural venues. This 
reflects a clear behavioral shift from the 
individual, efficiency-driven travel of 
weekdays to group-oriented, experience-
driven mobility, where travel destinations are 
more varied and less predictable. 
   Based on the analysis of weekday and 
weekend patterns, there are clear differences 
in flow dynamics, temporal rhythms, 
geographical hotspots, and travel motivations. 
On weekdays, the dominant pattern is a tidal 
flow between peripheral residential areas and 
central employment hubs, forming a 
predictable loop: residents move from suburbs 
to the core in the morning and return in the 
evening. In contrast, weekend flows are highly 
decentralized and event-driven, spreading 
from multiple residential points toward 
several popular hotspots and later dispersing 
back to scattered neighborhoods. Temporally, 

Figure 4: The bike sharing demands on 

weekdays (Morning Peak) 

Figure 5: The bike sharing demands on 

weekends (Morning) 



weekdays exhibit two sharp and intense peaks 
corresponding to morning and evening 
commutes, whereas weekends start later and 
feature a longer, continuous peak from early 
afternoon to late evening. Geographically, 
weekday hotspots are concentrated around 
major employment centers, such as the Futian 
CBD and Nanshan High-Tech Park, while 
during weekends, these same complexes 
transform into leisure and shopping 
destinations. In terms of motivation, weekday 
trips are mainly driven by productive 
activities (e.g., work), showing high rigidity 
and time sensitivity, whereas weekend travel 
is largely driven by consumption-oriented 
activities (e.g., leisure and shopping) and 
tends to be more flexible. 
 
5. Conclusion, Discussion, and Future Work 
   This study employs an explainable 
ensemble of two machine learning and two 
deep learning models to reveal the 
mechanisms behind bike-sharing demand 
dynamics. Results show that demand and 
imbalance issues arise from the interaction of 
temporal, spatial, and activity factors rather 
than any single driver. Hour is the most 
influential variable, shaping commuting-
driven weekday peaks and flexible leisure-
oriented weekend patterns. Subway 
accessibility and AOI_value strongly affect 
demand, underscoring the role of bike sharing 
in last-mile connectivity and the importance of 
functional diversity over population size. 
People flow has a direct positive impact, but is 
amplified by peak periods and mixed-use 
areas. Temperature effects are non-linear, 
benefiting demand within optimal ranges. 
Weekday flows follow predictable tidal 
commuting patterns, while weekend demands 
are more scattered around leisure hotspots. 
These findings highlight the need for 
integrated rebalancing strategies that 
consider time, space, and activity 
simultaneously. 
   Academically, this study contributes by 
quantifying the complex synthesis between 
the built environment and travel behavior, 
moving beyond linear assumptions to reveal 

how the marginal impact of factors like people 
flow is amplified during peak hours and in 
functionally diverse areas. Practically, these 
findings offer actionable insights for urban 
planners and operators. Key policy 
recommendations include: prioritizing 
development within a 500-800m buffer of 
subway stations to maximize public transport 
integration, identifying stable, high-demand 
zones for targeted infrastructure investment, 
such as dedicated parking, charging stations, 
and protected bike corridors connecting key 
hubs, and establishing a government-led 
platform for information sharing. 
   The study also acknowledges its 
limitations, primarily the challenge of 
inferring causality from correlational data 
(e.g., the endogeneity between subway 
stations and demand), data scarcity for 
certain variables like precipitation, and the 
single-city focus, which requires further 
validation for generalizability. Future work 
should therefore focus on incorporating real-
time transport data to capture dynamic 
substitution effects, exploring causal 
inference through natural experiments (e.g., 
using DID or RDD methods to analyze the 
impact of new metro lines), and extending the 
analysis to other shared mobility modes to 
support the development of integrated 
Mobility-as-a-Service (MaaS) systems. 
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