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ABSTRACT

Automated vehicles (AVs) are expected to be another disruptive transport mobility in the future.
With their human yields manual controllability to the robotics and computers, itis assumed that AVs
would be “a technological innovation which will allow organizing transport supply in a radically

different way” (Soteropoulos et al., 2019).

Recently, extensive research efforts have been dedicated to studying the possible characteristics
and potential implications of AVs. However, the existing literature is found limited in both quality

and quantity regarding the impacts on land use.

One of the hypotheses concerning AV characteristics that value of travel time or generally,
subjective travel impedance would decrease compared to the current Human-driven Vehicles (HVs),
is plausible as trip-makers would be able to be free from driver’s burden and even enable productive
use of the time during an AV travel. This change could carry far-reaching implications in travel
demand, such as daily travel mode choice; and subsequently in even land use through the concept

of accessibility, following such a Travel-Land Use feedback relationship framework.

Much existing literature has issued warnings of potential urban expansion with the prevalence of
AVs in the future, which hence could be a hindrance to those Japanese regional cities that have long

called for urban planning of compact cities.

To this end, this dissertation conducts a travel forecasting project on the AV implications within the
context of a Japanese regional area, Gunma Prefecture. The state-of-the-art travel forecasting
paradigm: activity-based travel demand model and dynamic traffic assignment are structured,
estimated, and validated, which is then connected with a residential location choice model to

predict the potential changes.

The year 2040 is assumed as the target year for the analyses, where the effects from the decreased
population are reflected in the scenario settings, along with some other variables to accommodate

the uncertainties in the characteristics of AVs.



The transport methodology framework in this dissertation captures the induced travel by AVs and
the feedback effects between the transport supply and demand. As result, for example, from 24%
to 48% increase in the total trip distance is found in four AV scenarios where all HV owners are
assumed to replace their HV with private AVs. Despite that this can be a signal for worsened network
level of service, the median accessibility gains with the introduction of AVs for all the scenarios are
found positive. In particular, the outskirt areas would enjoy more gains compared to their city center

counterparts.

A residential location model is then estimated and validated with accessibility as one of the variables.
The simulation results confirm the potential of urban expansion in the sense of residential locations.
Itis demonstrated that, compared to Base Scenario, the median distance between the residences to
the city center areas expands by at most 10.2% for the four AV Scenarios adopted in this dissertation.
Two countermeasures are then applied as the hypothetical policy mandates to mitigate the
problem. The results suggest that to provide a 10% subsidy directly to the land price is effective for
all the scenarios. Especially for the scenario with the most conservative yet realistic settings, the

results of median distance indicators are at similar levels to the results of Base Scenario.
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CHAPTER 1 INTRODUCTION

1.1 Rationale

Automated vehicles or autonomous vehicles (AVs), an emerging transport mobility tool with a

driverless feature, are developing at an ever-increasing pace.

High-level driving automation (SAE level 4 and 5; SAE, 2021) assumes the vehicle would completely
take over the control of the vehicle without any driver intervention. As such, a considerable decrease
in the general cost of travel is expected against human-driven vehicles (HVs), resulting in lower

impedance to travel time and distance for drivers (e.g., Fagnant & Kockelman, 2015).

Several other intuitions could be summarized following the ceding of vehicle controllability: for
example, more efficient use of road networks with smoother acceleration and deceleration; ability
to share with others and therefore reduce vehicle ownership; to induce travels from those who
cannot drive themselves like the seniors; and further in a longer period, to impact urban land use

pattern in a various way.

In a word, AVs have been hailed as more advanced transport mobility, and thus will impact the
current transportation system in a rather profound way. Despite considerable existing literature has
been working in this research field, the implications of AVs have not been sufficiently explored

enough, especially from a land use perspective (Soteropoulos et al.,, 2019; Harb et al., 2021).

Unlike the mainstream that conducted their studies in the U.S. or Europe, this study intends to offer
insights into the context of Japan, where few studies have been done regarding this research topic.
Although Japan shares many similarities with other Western countries, it is also at the forefront of
major issues like aging and depopulation. To what degree will AVs impact this nation is definitely of

significance from the author’s perspective.

As a developed country with a mature automobile manufacturing industry, Japan is not and cannot

afford to be indifferent to AV development. The Ministry of Land, Infrastructure, Transport and
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Tourism ([E %3874, MLIT) along with the Ministry of Economy, Trade and Industry (2% #E3EH,

METI) of Japan held their first “Committee on Automated Driving Business (HE1EfT & ¥ 4 A5t

)" dated back to 2015. Since then, the committee has released and updated the “Report on Efforts

for Achieving Automated Driving and Policies” to its fifth version (METI, 2021). According to the

report, the Japanese Government is committed to deploying level-4 AVs under mixed traffic

conditions in various areas by around 2025.

Against this background, this dissertation is aiming at filling one research gap: evaluating the

implications of AVs in both senses of transportation and land use in the context of Japan.

Such an investigation involves many causal effects as one would expect, so the author considers it
as well a valuable effort in exercising the state-of-the-practice travel forecasting: microsimulation
models in a Land Use Transport Integration (LUTI) manner (e.g., Bierlaire et al., 2015), for the

Japanese context.

1.2  Definition of Automated Vehicles

In general terms, current experimental AVs employ a “sense-plan-act” design. Under this framework,
sensors inside the vehicle first gather and process data from its outside environment. Then these
data are used to make plans, which will be later converted to actions for the vehicle control system.
This design harnesses the power of developed computation power nowadays and often runs in
parallel to improve computation efficiency. Thus, with highly advanced perception and processing
ability, automated vehicles are expected to emulate the human driver’s behavior and take over the

driver’'s role.

Taxonomy serves more specifically the purpose to define automated vehicles. The Society of
Automobile Engineers classification (SAE, 2021) currently is the most well-known and accepted

taxonomy for automated vehicles. It describes due duties for humans and vehicles in each level,
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suggesting the continuum of the research and commercialize steps (Table 1-1).

Table 1-1. The SAE Levels of Automation (adapted from SAE, 2021).

Leve Name Narrative definition Dynamic driving Dynamic  Operational
| task (DDT) driving design
Sustained Object task domain
lateral and  and Event  f3]lback (ODD)
Iongitudinal Detection (ODT
vehicle and
motion Response  fallback)
control (OEDR)
Driver performs part of all of the dynamic driving task
0 No driving The performance by the driver of the entire Driver Driver Driver -
automation  DDT, even when enhanced by active safety
systems.
1 Driver The sustained and ODD-specific execution by Driver Driver Driver limited
assistance a driving automation system of either the and
lateral or the longitudinal vehicle motion System
control subtask of the DDT (but not both
simultaneously) with the expectation that
the driver performs the remainder of the
DDT.
2 Partial the sustained and ODD-specific executionby ~ System Driver Driver limited
driving a driving automation system of both the
automation lateral and longitudinal vehicle motion
control subtasks of the DDT with the
expectation that the driver completes the
OEDR subtask and supervises the driving
automation system.
“System” performs the entire dynamic driving task (while engaged)
3 Conditional  The sustained and ODD-specific performance ~ System System Fallback-  limited
driving by an Automated driving system (ADS) of the ready
automation  €ntire DDT with the expectation that the DDT user
fallback-ready user is receptive to ADS-issued
requests to intervene, as well as to DDT
performance relevant system failures in other
vehicle systems and will respond
appropriately.
4 High driving  The sustained and ODD-specific performance  System System System limited
automation by an ADS of the entire DDT and DDT
fallback without any expectation that a user
will need to intervene.
5 Full driving  The sustained and unconditional (i.e., not System System System Unlimited
automation  ©ODD specific) performance by an ADS of the

entire DDT and DDT fallback without any
expectation that a user will need to
intervene.

According to Table 1-1, the highest SAE level, level 5 is defined to be superior to level 4 in and only

in assuming unconditional operational conditions (in the SAE Standard called Operational Design

Domain). As this dissertation does not intend to investigate the difference under specific operational

conditions, we assumed that AVs are in Level 4 or 5 for the modeling. Therefore, we will hereafter

generally describe our assumption for AVs as “high-driving automation”.

Two different ownership and operation models, private automated vehicle (PAV) and shared

automated vehicle (SAV), are usually distinguished. PAVs are exclusive to one certain person in
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accord with their ownership attributes, which is similar to the current private human-driven vehicles.
SAVs are assumed as a kind of mobility tool with an image of driverless taxis. The fleet is not owned
by certain individuals but by, for example, the government or commercial companies. SAVs can be
further categorized according to the number of passengers they serve for each ride. Those shared
AVs that offer serve to individuals are simply called SAV in this dissertation, while the others offer to
serve to multiple passengers each ride are called Shared Automated Rides (SAR). It is expected that
SARs would consider picking up other passengers even in the service of one passenger, where extra

travel time is usually generated from the detours. See Table 1-2 for a comparison of these operating

models.

Table 1-2. Comparison of Operating Models (adapted from Litman, 2021).

Private Human-
Driven Vehicles

Private Automated
Vehicles

Shared Automated
Vehicles

Shared Automated
Rides

Features

Advantages

Disadvantages

Motorists own or
lease, and drive, a
vehicle.

Low costs. Always
available. Users can
leave gear in vehicles.
Pride of ownership.

Requires driving
ability, and associated
stress.

Households own or
lease self-driving
vehicles.

High convenience.
Always available.
Users can leave gear
in vehicles. Pride of
ownership.

High costs. Users
cannot choose
different vehicles for
different uses. Likely
to increase vehicle
travel and associated
costs.

Self-driving taxis offer
serve individuals.

Users can choose
vehicles that best
meet their needs.
Door to door service.

Users must wait for
vehicles. Limited
services (no driver to
help passengers carry
luggage or ensure
safety).

Micro-transit serves
multiple passengers

Lowest total costs.
Minimizes
congestion, risk and
pollution emissions.

Least speed,
convenience and
comfort, particularly
in sprawled areas.

1.3  Research Objective and Scope

The research objective of this study is to evaluate the implications of private automated vehicles
(PAV) in the context of a Japanese regional area. The research considers a land use implication:
residential location pattern changes as its final output, to get which travel behavior changes are also

quantified and presented.

This study is expected to gain insights into the AV impacts from transport to land use range: for

example, number of trips and tours, total travel distance, accessibility, and distance to center areas
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from residence. It is also designed to test two policies in attempting to mitigate the potential

negative effects.

Such an investigation necessitates building models with sufficient responsive properties to produce
“quality of the travel forecasts for future and changed conditions” (Davidson et al., 2007). For that
purpose, this dissertation is dedicated to estimating and validating transport and land use models
that can appropriately reflect the changes induced by AVs. Specifically, an activity-based travel
demand model, a dynamic traffic assignment travel supply model, and a land-use model are
combined serving the methodologic framework of this dissertation. Activity-based accessibility
(Dong et al., 2006) is used to evaluate transport implications in a composite way as the expected
utility gained from making daily travel decisions. The application of this concept not only adds a
layer of economic analysis to the operational analysis layer of the simulations results, an issue that
remains relatively understudied in the existing literature (Soteropoulos et al., 2019) but serves as a

connection between the transport and land use models.

To the best knowledge of the author, this study is dedicated to filling several existing knowledge
gaps. From the perspective of research purpose, the existing literature is limited on how AV would
impact future residential location choice, particularly in a manner connecting transport and land use
models (Section 2.3.6). Furthermore, this study built a transport forecasting system within the data
from the Japanese context, which has considerable value in being a well-validated state-of-the-
practice policy-responsive model that can capture tour-based and daily-schedule-based changes
and interactions; can capture short-term travel demand and supply interactions; is able to connect

with a residential location model; and is able to measure Tkm mesh cell level changes.

Not to be confused with other works, there are some aspects that this dissertation does not intend
to address. First, high-driving automation is adopted in this dissertation but forecasting the specific
time for its emergence is not one of the objectives. Second, specific consumed energy for AV is not
defined, thus those evaluations related to electricity-propelled vehicles, such as charging and

recharging issues, are not covered. Third, connected vehicle technology is not considered in this

21



dissertation. Fourth, car-sharing service is not assumed allowed for the service, each time one

vehicle can take one passenger only.

1.4  OQutline of This Dissertation

This dissertation is organized as follows. Chapter 2 presents a literature review covering three parts:
activity-based travel demand model, integrated transportation models, and automated vehicles.
Chapter 3 then discusses the methodology adopted in this dissertation with reasonings and major
data sources introduced. Chapter 4 and Chapter 5 subsequently give descriptions of the travel
demand model and travel supply model with details such as estimation and validation issues.
Chapter 6 applies the two models just described in an iterative way to obtain the transport
implications of the automated vehicles within four scenarios. Chapter 7 describes the specification,
estimation, and validation of the residential location model, as well as the data and sub-models (e.g.,
a land price hedonic model) used. Chapter 8 presents the application to the residential location
model under automated vehicle scenarios, hypothetical policy mandates follow to attempt to
mitigate the potential negative effects found in the application results. Finally, Chapter 9

summarizes the research findings and concludes for this dissertation.
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CHAPTER 2 LITERATURE REVIEW

This dissertation is finding its roots in so many various concepts or fields of research including
automated vehicles, activity-based travel demand models, and land use models, that a multi-
faceted literature review is deemed necessary for a better understanding of the subsequent
chapters. The review will be written in a somewhat general manner. It is worth noting that, however,
the review presented here is in no way exhaustive, but only those being representative are selected

and presented.

2.1 Review on Activity-based Travel Demand Model

The idea of activity-based models stems from a very basic characteristic of travel demand: “the
demand of travel is derivedq, it is not an end in itself’ (Ortuzar & Willumsen, 2011). It is the need to
undertake activities at locations different in space that makes people travel. The activity-based
approaches as such lay great emphasis on behavioral realism, that is, the underlying decision-
making process for trip-making. Another worth-noted characteristic of the activity-based
approaches is derived from the point above: measuring travel in a whole day or even whole week

frame to allow better capturing of the effects across multiple trips (Kitamura, 1996).

Besides these main concepts that are probably shared by most activity-based models, readers may
be cautioned with a caveat that, models described as “activity-based” do not have “a great deal in
common” (Boyce & Williams, 2015). Level of aggregation, policies meant to address, decision
processes to model and validate, etc. could vary much among different models that claim

themselves “activity-based”.

After all, the activity-based travel demand model is going to play an important role in this
dissertation in that it is considered the state-of-the-practice travel demand model, where travel
behaviors are captured in a rather advanced way. This argument will be elaborated in the following
contents where the evolving process of travel demand models is firstly presented, following a sub-

section that intends to focus on the field of activity-based studies and models. The review is
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expected to provide a basic image of what activity-based models are and why we must use them as
one of the methodologies, to which review works of, for example, Pinjari and Bhat (2011), Rasouli

and Timmermans (2014), and Li (2015) have been referred.

2.1.1  Conventional Travel Demand Models before Activity-based Models

Travel demand refers to the needs of travel, it contains information such as origins, destinations,
time of day, and travel mode to suggest how trip makers reach places to fulfill specific activities or
needs. Travel demand modeling, as its name suggests, is to construct models for estimating this
information of travel demand. Due to its role in representing the complexity of human behaviors,
especially in the sense of decision making, travel demand modeling has been long researched and

applied since the 1950s and lies at one of the cores of transportation planning nowadays.

In the beginning, however, the focus of transportation planning was to evaluate long-term
transportation infrastructure supply. The 1950s marked the post-war economic expansion when
motorization and suburbanization stimulated mass infrastructure construction in the United States
(Kitamura, 1996). Following these two trends, surged commuting travel demand was generated in
a so unprecedented way that the need for accommodating them came into the focus of
transportation planning back then. This very pioneering style is called “supply-oriented planning
process” (Pinjari & Bhat, 2011). At that time, information required for transportation planning was
relatively simple and forecasting population increase patterns was less difficult than now
(Kitamura, 1996), hence predicting travel demand in an aggregate manner would be sufficient. The
Four-Step travel demand model emerged against this background, where improvement in

computing powers should as well not be ignored.

The Four-Step Model (Mitchell & Rapkin, 1954) was originally proposed by Chicago Area
Transportation Study in 1955 under the leadership of Douglas Carroll, whose experience in the

Detroit Metropolitan Area Traffic Study two years before was highly valued and used (Boyce &
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Williams, 2015). The Four-Step Model system separates the travel demand estimation process into
four sequentially connected procedures: trip generation, trip distribution, mode choice, and route
choice. First, trip generation measures trip frequency for each geographic unit in the study area.
Trips to and from each unit, or called respectively productions and attractions, are estimated
separately. Then, in the trip distribution step, productions calculated from the first step are
distributed to match the trip attraction for each unit. Next, the mode choice part decides the
proportion of trips by different travel modes for each origin-destination (OD) pair. Finally, route

choice, or traffic assignment step, assigns the mode-specific trip tables to traffic networks.

The whole Four-Step Model process can be illustrated in Figure 2-1 (McNally, 2007). The
“Equilibration” arrow in the figure stands for that in the basic Four-Step Model process, only route
choices have an equilibration process. The “Feedback” arrows stand for that in most applications
Four-Step Model equilibrates link travel times to the trip distribution and/or mode choice models.

Further details are referred to McNally (2007) and Ortuzar and Willumsen (2011).

Transport

System

Trip Trip N Mode Route
Generation Distribution Choice Choice
z z L ]S
Equilibration :

Figure 2-1. Four-Step Model Process (McNally, 2007).

However, many researchers and practitioners voiced against Four-Step Model soon after their
popularity in practice. Rasouli and Timmermans (2014) in their informative review paper
summarized criticisms of the Four-Step Model in four aspects. First, Four-Step Model lacks
integrity: consistency among the sub-models is questioned as, for example, the distance decay
function in trip distribution does not necessarily match with the one used in the trip assignment.

Second, Four-Step Model lacks dependency: effects from other trips conducted by the same trip
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maker (this effect could be ignored for Route Choice, Bradley et al., 1999), or from the people in the
same household, or from other “steps", cannot be captured; this suggests that Four-Step Model is
in its design “inadequate to predict such secondary effects and complex behavioral adaptation
patterns in response to external policies”. Third, Four-Step Model has strong aggregate nature: the
models are measured in the unit of trips that emanate from traffic zones; all individuals and
households from the same zone are considered identical except that they are segmentalized by
certain variables, which are often a few given computational burdens. Temporal differences also
are usually captured by building two Four-Step Models for peak and off-peak periods only. Fourth,
Four-Step Model lacks behavioral realism: no choice mechanisms are underpinned, nor behavioral
constraints are considered in the model designs. In Rasouli and Timmermans (2014)’s words as a

summary, Four-Step Model is “nothing but a special application of spatial interaction models.”

As such, along with the Four-Step Model prevailing around Metropolitan Planning Organizations
(MPQs) in the US and Europe after its introduction, the 1970s to 1980s marked a shift from the
supply-oriented transportation planning to statistically-oriented trip-based travel modeling
approach (Pinjari & Bhat, 2011). In this period, escalating capital costs led to a relatively saturated
infrastructure market and traffic congestion emerged as a side result of the past economic
expansion. Consequently, interest in using Transportation Systems Management (TSM) and Travel
Demand Management (TDM) has grown among transport planners and modelers. These
management measures, such as congestion pricing and ridesharing incentives, focus on either
changing transport service characteristics or controlling travel demand to solve transport

problems.

Under these circumstances, there was a need for understanding and analyzing policy responses at
the disaggregate or individual level. The introduction of Discrete Choice Models (e.g., McFadden,
1973) at that time has been providing a much more useful methodology framework. The method
has its root in preserving the notion of “rational decision makers who would make the same choice

if repeatedly confronted with a set of choices under the same conditions” (Boyce & Williams, 2015),
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under which choice makers are assumed to select the option with maximum utility. The utilities
are considered by the modeler as a random variable, whose error term attributes to population
taste variation, unobserved variables, measurement errors, and proxy variables (McFadden, 1973;
Ben-Akiva & Lerman, 1985). The so-called Random Utility Maximization (RUM) theoretical
framework derived discrete choice models, such as Multinomial Logit (MNL) dominated the
disaggregate behavioral approach in the era. A delineation of MNL will be given in Chapter 3

(Section 3.1).

The discrete choice models, mainly MNL, were widely applied to mode choice in the beginning.
For example, a short-term forecasting project led by McFadden and colleagues on the modal share
of the Bay Area Rapid Transit project was considerably better than the official forecast, both are

compared with the rapid transit’s observed share in 1975 (Boyce & Williams, 2015).

Two pioneering works and some subsequent studies that attempted to extend the discrete choice
model application to other dimensions of travel demand, i.e., not limited to mode choice or other
single aspects, are noted here. This stream of models is called the disaggregate travel demand
model or Integrated Trip-based Model (Bowman, 2009) against the aggregate nature of Four Step

Models.

Domencich and McFadden (1975) developed a multi-level model to represent optimal choices
within a decision hierarchy that is composed of work and residential location choice, vehicle
ownership choice, trip or no trip choice, destination choice, time-of-day choice, and mode choice,
in that order (Figure 2-2). Each level of decision “can be viewed as being made conditional on fixed
preceding decisions and optimal succeeding decisions.” To specify, the solid arrows in Figure 2-2
represent the information of the decision from the higher level, the broken arrows represent the
expected optimal values, or “Inclusive Value” from the lower level. This multi-level model is, as
argued by the authors, compatible with the conventional Four-Step Model (or in the opposite
sense) with a trip or no trip choice corresponding to trip generation, and destination choice to trip

distribution. Although the work was empirically applied with limited sample size and choice sets,
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also an inappropriate linear average form of Inclusive Value, the treatment of information from

succeeding level decisions has marked a noticeable improvement.

Work and residential |
location choice

l

Vehicle ownership |-
choice

l

Trip/no trip choice

l

Destination choice

!
Time-of-day choice
l

Mode choice

Figure 2-2. Multi-level Travel Behavior Model System in Domemcich and McFadden (1975).

Ben-Akiva and Lerman (1974) extended the work of CRA (1972), a prior report version of Domencich
and McFadden (1975), by suggesting the “symmetric” hierarchy of travel demand choices. It was
argued by Ben-Akiva and Lerman (1974) that the hierarchy in CRA (1972) requiresa
prioriinformation of the ordering, which represents still a sequential decision-making process.
Instead, a “symmetric” hierarchy with a simultaneous or joint decision-making process that treats
multiple levels of decisions into a combined choice set, should make more sense in the application.
His empirical study of comparing the simultaneous and sequential structure for a travel mode-
destination problem suggested that, however, there was little advantage over the other. Whether
to use one structure against the other, therefore, remained inconclusive in the period (Stopher &
Meyburg, 1975). Nonetheless, there is another important contribution from Ben-Akiva and Lerman
(1974) that a form of the natural logarithm of the denominator of the MNL model, later expressed

to “logsum”, was proposed to be used as the Inclusive Value.

A subsequent work by Ruiter and Ben-Akiva (1978) developed one of the first operational
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disaggregate travel demand models, which was prepared for the Metropolitan Planning
Organization (MPO) in San Francisco, California, the U.S. Its hierarchical structure is similar to what
we have introduced in CRA (1972) and Ben-Akiva and Lerman (1974), and the models are connected

sequentially or jointly depend on their interrelationship.

Despite these inspirational studies with significant improvements over Four-Step Model,
disaggregate travel demand approaches were mostly still, like in the Four-Step Model’s case, applied
in a trip-based context, which has been receiving many criticisms such as failing to capture complex
individual responses. It is to this end that the following development of behaviorally-oriented
activity-based approaches is introduced later (Pinjari & Bhat, 2011). We shall introduce them in the

following sections.

2.1.2 Seminal Works in Activity-based Context

In the late 1970s, researchers and practitioners raised concerns about the developments of
disaggregate travel demand models despite their theoretical superiority over the Four-Step Model.
Accumulating evidence collected from revealed individual or group responses at that time showed
inconsistency with the results from RUM-based disaggregate discrete choice models (e.g., Heggie &
Jones, 1978). The new generation of travel demand approaches, activity-based models, emerged

against this backdrop.

The modern development in studying travel in the framework of activities is usually attributed to
two seminal studies: Hagerstrand (1970) and Chapin (1974). The work of Hagerstrand examined the
role of geographical and temporal constraints in determining choices of activities and travels,
whereas Chapin’s emphasized the associations between activities and inherent desires as well as
societal constraints. Hagerstrand’s work might need to be elaborated a little more here as its
significance in defining traveling constraints. Hagerstrand (1970), from a standpoint of regional

science, proposed three kinds of constraints that trip-makers need to cope with every day: “Capacity
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constraints”, “Coupling constraints”, and “Authority constraints”. Capacity constraints represent any
limits owing to biological or physical requirements such as minimum sleeping hours and a
maximum speed of travel mode. Coupling constraints represent those that require grouping of
several people at one specific location at a specific time, which refers to a “bundle” of several “paths”.
Authority constraints stand for any requirements from the accessibility of institutions, such as the
opening and closing time of a shop. Of more importance is that Hagerstrand (1970) managed to
summarize these constraints into one well-known conceptual framework: the space-time prism. The
framework describes an individual’s actual behavior as a “path”, whose potential space is called a
“prism”. In this sense, the concept of the prism is also regarded as a Person-based accessibility
measure (Geurs & van Wee, 2004). These concepts have inspired many of the subsequent works,

especially in the terms of determining feasible activity and travel choices.

Jones (1979) summarized the two studies above and addressed a framework connecting travel,
activity, time, and space. In Jones’s words: “it is thus probably most productive to combine the two
approaches and to view activity ‘choice’ as a process for satisfying a need or a set of needs, subject
to a set of subjective and objective constraints”. Jones (1979)’s works identified travel as a derived

demand explicitly, and it is his efforts that brought the activity-based ideas one big step further.

Subsequent analyses in the 1980s spanned many varieties such as activity participation, spatial-
temporal constraints, interaction in travel decisions, data collection techniques, and operational
activity-travel models. Interested readers are referred to Kitamura (1988) for a detailed review of the

work conducted in the 1980s.

The various focuses of activity-based approaches have been stretching over their respective
research field since then. Categorization of these varieties has not come to a general agreement
unfortunately. Kitamura (1988), for example, grouped them into two categories: “activity-based

III

approach as travel behavior science” and “activity-based approach as a planning tool”. The former
focused on the “theoretical explanation of observed travel behavior” and the latter on

transportation planning practice. Bhat and Koppelman (1999), as another example, undertook their
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review in two categories: “Single Activity Episode Participation” and “Activity Episode Pattern
Analysis”, which respectively stands for the participation of individuals in a single activity episode,
and multiple activity episodes generation and scheduling. In either case, activity-based research of
the latter term is the focus of this dissertation as we are addressing a travel forecasting problem. So,
we will address in the rest of this review this specific category, which is in some cases generally called

“activity-based models of travel demand” (Rasouli & Timmermans, 2014).

2.1.3 Towards Operational Activity-based Models of Travel Demand

The seminal activity-based theoretical notions shed light on the following development of activity-
based models. Although many early models are better described as prototypes which were never
put into practical use, considerable progress has been achieved in the models’ deployment by

multiple planning organizations across the world.

Since the end of the 1980s, travel demand models in activity-based concepts have been gathering
momentum as a move to the next generation of travel forecasting methods in the travel research
community. Finally, as a response to the evolving requirements of transport and environmental
issues (e.g., requirements from the Clean Air Act Amendments of 1990 and Intermodal Surface
Transportation Efficiency Act of 1991 in the United States), the Federal Highway Administration of
the U.S. launched the Travel Model Improvement Program (TMIP), which awarded research grants
for proposals of “a new generation of travel demand models” to some organizations such as
Research Decision Consultants (RDC). As result, since the 2000s, some researchers can assert that
activity-based travel demand modeling has attained the academic mainstream, despite the

persistence of the conventional Four-Step Method in practical applications (Davidson et al., 2007).

In line with the categorization by Rasouli and Timmermans (2014), three types of activity-based
models can be distinguished: Constraints-based Models, Computational Process Models or

sometimes called Rule-based models, and Utility-maximizing Models. Some more recent models
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adopted a form of the hybrid of the latter two types, so they are usually categorized as Hybrid
Models. Although these types are not strictly chronologically developed, a general description is to
be addressed in this section in the order above. Tour-based models are treated as an independent
sub-section to better the clarification. Some exemplary models will be highlighted in detail for their

specific significance or for being related to the methodology used in this dissertation.

2.1.3.1 Constraints-based Models

The first type of activity-based model refers to the term “constraints-based” models, which can be
traced back to the mid-1970s. These pioneering models, however, do not fit well the field of travel
demand model or travel forecasting approach as they are designed to check whether a given daily
itinerary is feasible or not, rather than to predict individual- or household-level activity-travel
patterns (Rasouli & Timmermans, 2014). This is well explained as some of the constraints-based
models emerged even earlier than disaggregate travel demand models. Nevertheless, predicting

rudimental behavioral adaptations to policies can also be found in some of the models.

Constraints-based models are mostly derived from the framework of the space-time prism
(Hagerstrand, 1970), which defines feasible activity-travel choices amid geographical and temporal
constraints. Besides the information from the itinerary, inputs of the model include the opening and
ending time of their corresponding facility, available modes of transport, and their travel time

between the activity locations. Two typical examples of models are introduced below.

Lenntorp (1976) elaborated the space-time prism concept and developed PESASP model, which was
designed for analyzing alternative ways of conducting a given itinerary. It also defined the concept
of potential path area: the planar projection of the 3-dimensional prism that has been applied in

some following works, for example, to introduce “space-time accessibility” (Burns, 1979).

Following PESASP, Jones et al. (1983) proposed CARLA model for not only generating potential

feasible activity patterns given the temporal-spatial constraints but also providing likely schedule
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adjustments to certain policies. The adjustments are limited to altering activity duration or starting

and ending time.

Despite their progress, the constrained-based models have received criticism regarding the
behavioral foundation, deterministic treatment for choice situations, and insufficient representation
of the travel environment (Rasouli & Timmermans, 2014). Several more recent research has
addressed some of the limitations. For example, Kim and Kwan (2003) offered a short review of the
efforts in enhancing travel network representation in this context and proposed a Geography
Information System (GIS)-based algorithm to even improve so. Also, generalizations of the original
space-time prism concept have emerged recently such as accommodating joint activity for multiple
trip makers and the effects of social networks (e.g., Neutens et al., 2007). But still, this specific type

of model can be hardly said to fit well in the field of forecasting changes in travel demand.

2.1.3.2 Interim Tour-based Models

During the process of the evolution to the operational models, it is worth mentioning that there was
an interim stage of the travel demand method that is called tour-based travel demand models
(Boyce & Williams, 2015). The tour-based models made an advance upon the conventional trip-
based models in that they joined related trips into tours for each sojourn, thus were able to examine
the trip-chaining effects associated with policy responses. Among the tour-based models, two
works: VISEM (e.g., Fellendorf et al., 1997) and the SIMS (Algers et al., 1996) represent respectively a
refinement directly of the Four Step Model and disaggregate travel demand model and will be

discussed in the following.

VISEM (Fellendorf et al.,, 1997) was designed by Germany’'s company PTV as its regional travel
forecasting system, which emphasized its improvement in the trip generation sub-model compared
to the Four Step Model. In VISEM's design, a sub-model that predicts the number of tours rather than

the number of trips is used to replace the trip generation sub-model. The tours are conceptualized
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in the form of HXH, HXOH, and HXOH, where H represents home activity, X represents work-related
trip and O represents other trips. The model firstly summarized each tour type’s occurrence from
national or municipal travel survey data and then associated them with each person category that
they in advance distinguished so that the distribution of daily number and types of tours can be
determined. Some other refinements such as keeping mode continuity in the modal split sub-model

by modeling mode of travel at the tour-level are also applied.

SIMS (Algers et al., 1996) was an extension of Ruiter and Ben-Akiva (1978) and was applied in
Stockholm, Sweden. It is considered as the state-of-the-practice in the mid-1990s with a
sophisticated hierarchical model design that enhanced itself in accommodating more complex
substitution patterns. This model had its root in the discrete choice model and considered
household task allocation as one of the levels in the hierarchical structure. The concept of logsum
was used as representing the expected utility measures across each level of the model. Shopping

tour models are exemplary of SIMS features (Figure 2-3).
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Figure 2-3. Structure of Shopping Tour Model in SIMS (Algers et al., 1996).

From Figure 2-3 we can tell that in SIMS the shopping tour model is determined in an order of 1) the

number of tours per household; 2) the allocation of each tour/activity to specific household
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members; 3) the type of tours; 4) mode of travel; and 5) travel destination. The shopping tour
hierarchy is conditioned by work tour decisions which involve a group of decisions. It is thus from

these points makes SIMS an advanced version of the disaggregate travel demand model.

2.1.3.3 Rule-based Models

Rule-based models, in some cases called Computational Process Models (CPM, e.g., Kitamura, 1996,
Rasouli & Timmermans, 2014), refer to those activity-based models using heuristics to mimic the
decision-making process. Although these heuristics are usually context-dependent and thus have
so enormous branches that cannot be practically demonstrated in one single model, the rule-based
models can be coarsely viewed as an “exhaustive set of rules in the form of condition-action pairs”
(Pinjari & Bhat, 2011). These rules or heuristics sometimes do not pursue an “optimal” but instead
“non-inferior” or “sub-optimal” decisions during the process to reflect the embedding activity

constraints and priorities, which are context dependent as mentioned above.

Representative examples of the rule-based models are introduced as follows, while some models
are omitted such as SCHEDULER (Garling et al., 1989) and SMASH (Ettema et al., 1993). See Pinjari
and Bhat (2011) and Rasouli and Timmermans (2014), etc. for the information and details of all the

models concerned.

STARCHILD (Recker et al., 1986a; 1986b) is considered the first rule-based activity-based modeling
framework (Li, 2015). This model differentiates itself from the concept of the constraints-based
model by treating the outputs from CARLA (Jones et al., 1983), one of the aforementioned
constraints-based models, as part of its choice sets of activity patterns. After choice set generation,
alternative grouping, and filtering heuristic procedures, an MNL model is applied to identify the

specific personal activity schedule.

AMOS (RDC, 1995; Kitamura et al., 1996) is considered to be the first applicable model of this stream,

as it was implemented in Washington, D.C. The model was partly funded by TMIP and thus one of
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the outputs of the Program. AMOS is developed to simulate trip makers’ response towards travel
demand management policies such as parking pricing, thus emphasizing itself in rules of policy
adaptation, which however requires custom development for each policy. Its whole model structure

is shown in Figure 2-4.
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Figure 2-4. AMOS Model Structure (adapted from RDC, 1995).

AMOS is composed of five parts which are shown in bold in Figure 2-4. Among them, Response
Option Generator predicts the behavior response to the travel demand management and is the core
of AMOS's design. The Generator applies a Neural Network to determine the probabilities of the
response options of changing departure time, switching mode of travel, working at home, and
doing nothing. After the basic response generated by the Response Option Generator, Activity
Pattern Modifier will be applied to simulate secondary responses such as activity re-scheduling, re-
linking, and trip re-timing. These phases are applied iteratively until pre-specified criteria based on

utility are fulfilled.

PCATS model (Fujii et al.,, 1997; Kitamura & Fujii, 1998) is an activity-based model that was developed
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for the Japanese context, partly led by some of the authors of AMOS. PCATS model assumes that an
individual’s activity engagement can be divided into two types: fixed activities and flexible activities,
which can be conducted in blocked periods and open periods, respectively. Given an assumption
that individuals have commitments for fixed activities, the PCATS model considers all fixed activities
are forming a space-time prism for delineating the feasible area of flexible activities. For each open
period, activity type, location, mode, and duration are modeled sequentially with Nested Logit (NL)
model or duration model. The improved version of the PCATS model later was integrated with a
population synthesizer and re-estimated in the context of Florida, formed into the FAMOS (Pendyala

et al., 2005) model.

ALBATROSS (Arentze & Timmermans, 2004) represents an advance in rule-based activity-based
models more recently. It was developed for the Dutch Ministry of Transportation and has been
implemented in the whole nation of the Netherlands. One important feature of ALBATROSS is
treating heuristics endogenous, which is contrary to treating them exogenous as most previous
models did. The core of ALBATROSS is a Scheduling Engine that decides generating, sequencing,
and timing of fixed and flexible activities sequentially. For each step, a decision tree that is derived
from observed diary data to mimic human decision making is employed, where choice sets are
delineated considering multiple time-space constraints. The design of the decision trees satisfies
the requirements of completeness and consistency, new branches or leaf nodes are achieved by
splitting the condition state of several condition variables. Since its original version, ALBATROSS has
been improving in various ways. For example, the model incorporates learning mechanisms in the

heuristics and thus sometimes considered being agent-based (Pinjari & Bhat, 2011).

TASHA (Miller & Roorda, 2003) stands for the effort of a combination of rule-based models and the
utility-maximizing models that is to be introduced in the following section. TASHA is mainly applied
in Canada. TASHA applies activity generation and sequencing in a rule-based way while conducting
mode choice and destination choice, etc. within the discrete choice model framework. One major

difference between TASHA and ALBATROSS is that TASHA draws activity attributes such as its
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duration from the empirical distribution of the study area.

Another model with the hybrid manner, ADAPTS (Auld & Mohammadian, 2009; 2012) is also worth
noting with its feature of not pre-defining order of the modeling process. It thus explicitly considers

the dynamics in activity scheduling and planning.

2.1.3.4 Utility-maximizing Models

Utility-maximizing models stand for another stream of activity-based models that have been
popular since their introduction in the mid-90s. This stream of models is based on the discrete choice
method framework as well as the framework’s major premise of Random Utility Maximization in

choosing alternatives, from which the stream takes the name.

As introduced in sub-section 2.1.1, there have been many earlier models that employed discrete
choice models, exemplified by Domencich and McFadden (1975) and Ruiter and Ben-Akiva (1978).
Utility-maximizing models can be regarded as extensions to span the modeling context to at least
an entire day by including more dimensions such as daily activity pattern choice and seeking a finer

resolution for its applications. Several representative model systems are reviewed below.

The Daily Activity Schedule model (Bowman 1995; Ben-Akiva et al., 1996; Bowman & Ben-Akiva,
2001) constitutes the basis for a group of practical transportation planning projects later and thus
serves a vital role in this specific stream of models. The model is of multi-hierarchical NL design
(Figure 2-5) which is similar to Ruiter and Ben-Akiva (1978), and also is a part of TMIP. Five levels (or
nests) form the structure: daily activity pattern (e.g.,, home-work-home with one secondary tour);
time of day of the primary tour (e.g., AM Peak, Midday, PM Peak, and Other); mode of travel and
destination of the primary tour, in zone-level; time of day of the secondary tour; mode of travel and
destination of the secondary tour. Designating the primary tour of the day requires a series of pre-
defined rules to decide the priority among all the tours during that day. For example, work activities

are deemed with higher priority than other activity types. Other tours except the primary tour are
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defined as secondary tours. By categorizing the tours, modeling the daily activity schedule level
became more feasible to deal with. This is one of the features that let the Daily Activity Schedule

model system become an inspiration for the later models.

Daily Activity Pattern |«

l

Primary Tour:
Time of Day

l

Primary Tour:
Mode and Destination

l

Secondary Tour:
Time of Day

|

Secondary Tour:
Mode and Destination

___________

Figure 2-5. Implemented Model Structure of Daily Activity Schedule Model (adapted from Bowman, 1995).

Since the introduction of the original Daily Activity Schedule model, many variants and
improvements of this type have been proposed and launched in practice by many MPOs across the
United States. The original model prototype analyzed empirically data from Boston Household Diary
Survey but have not been used in practice. Soon after that, Bowman (1998) and Bradley et al. (1998)
developed Portland Metro Model that extended the levels in its hierarchical design, added at-home
activity types into the daily activity pattern choice; level of work-based subtours; and level of
intermediate trips. Its production version has in total 114 alternative daily activity patterns, which
suggests the increased complexity and sensitivity compared to the original Boston one with around

30 alternatives.

The recent two decades have witnessed subsequent applications including the SFCTA model
(Bradley et al., 2001), the SACOG or the SACSIM model (Bradley et al., 2010), the DRCOG model
(Sabina & Rossi, 2007), the Oregon statewide model (Brinckerhoff, 2010), the PSRC model (PSRC, n.d.;
Bowman & Bradley, 2014), etc., continuously emerges in practice. These models are all derived from
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the original prototype and shared some similar aspects like the hierarchical econometric model
system to represent one entire day using stochastic microsimulation. Some design features
distinguish each other, see the table in Bowman (2009) for a detailed comparison. The main
differences, according to Bowman (2009), are related to the level of spatial and temporal resolution;
varieties of activity purposes; treatment of household interactions; treatment of intermediate stops;
interdependency between mode, destination, and time of day; and treatment of expected utility

variables across the hierarchy.

Among these subsequent models, the SACSIM model (Bradley et al., 2010) probably merits a few
more words of description for its salient features. The SACSIM model is one of the models still in use
(for Sacramento, California) with substantial improvements compared to the original prototype and
the Portland Model. For example, the SACSIM model reformulates the model level of daily activity
pattern into levels of occurrence of tours and stops for each activity purpose. The exact number of
tours and stops are separated as independent levels that are predicted after the occurrence model.
In this way, the pattern alternative can be greatly reduced and leave the exact numbers to be
conditioned by other levels of models. Also, the SACSIM model is the first of this type to adopt a
parcel-level spatial resolution and half-hour temporal resolution, both are at a very fine level with

the help of improvements in computing power and software design.

Following the Daily Activity Schedule model, especially the SACSIM, Li (2015) designed and
estimated a version for the city of Singapore. The model is a part of the development efforts for the
SimMobility project (Adnan et al.,, 2016) as the pre-day travel demand model for the mid-term level.
The project is a model system that attempted to integrate an activity-based system, dynamic traffic
assignment model, long-term location choice model, etc. Some words of elaboration will be given
later. Another notable application of the DAS-type model was found in Yagi and Mohammadian
(2010), who developed it for the Jakarta Metropolitan Area in Indonesia, as it is a less common case

carried out within the context of a developing country.

One feature of the DAS models in their basic forms is that they explore no more than individual-level
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daily activity-travel patterns. Since the 2000s, intra-household interactions have been incorporated
in, for example, a series of models called CT-RAMP (Vovsha et al., 2011). The CT-RAMP models
explicitly incorporate modeling of joint activities, and household task allocation by adding these
two levels of sub-models into the choice hierarchy. After defining information on mandatory tours,
joint non-mandatory tours as well as maintenance tours are generated and scheduled for the
household level, where tour participation for joint non-mandatory tours and allocation for

household maintenance tours are modeled, respectively.

Operational models from the CT-RAMP family include the NYBPM (Vovsha et al., 2002), the MORPC
Model (Consult PB, 2005), and the Phoenix model (Vovsha et al., 2011), among others. Advanced
features have been introduced into some recent models. For example, the Phoenix model
incorporated sub-models for visitors’ travel and special events such as large-scale concerts. Besides,
the latter two models are designed in a time-allocation fashion, where the entire daily activity-travel
schedules are generated once each available timeframe has been filled up in order. They
emphasized themselves in a tour formation style which is also been adopted in some improved

versions of CT-RAMP (e.g., Paleti et al., 2017) though in a more sophisticated way.

The CEMDAP (Bhat et al., 2004; Pinjari & Bhat, 2011) model is another activity-based utility-
maximizing model characterized by its “continuous time activity-travel forecasting system”.
Separate modeling frameworks and sequences are adopted for workers (including students) and
non-workers. For workers, daily patterns are defined in terms of five different sub-patterns: Before-
Work, representing those undertaken before leaving home to work; Home-Work, representing those
conducted during the commuting leaving for work activity; Work-based, representing those
undertaken from workspace; Work-Home, representing those pursued during the commuting back
home; and After-Work, representing those conducted after arriving home from commuting. For
each sub-pattern, attributes of pattern-level, tour-level, and stop-level are determined via various
econometric models. For example, the number of tours as a pattern-level attribute is determined by

the Ordered Probit model. Travel time from the last stop and activity duration, as stop-level
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attributes, are determined by regression as continuous choice alternatives. Before the scheduling
model system mentioned above, a mechanism called the generation-allocation model system
applies to the household level to determine if a specific type of activity, say grocery shopping or
pick-up of the children, will be made or not and if so, who is going to conduct it. More than 50
econometric models are required in total. Together, these two model systems are performed in a
microsimulation framework with pre-defined order of the decisions. An example of the CEMDAP-
based model application along with a long-term choice model and a population synthesizer can be
found in Pendyala et al. (2012a) for the southern California area. Also, an improved version of

CEMDAP is applied at the household level (Bhat et al., 2013).

214 Summary

Activity-based travel demand models are in line with one of the most salient features of travel demand
that is being derived. This more behaviorally sound model stream has been developed from
conceptual frameworks to operational model systems and is becoming the focus of the travel demand
models. Behavioral realism is earned by introducing the level of daily activity-travel pattern that is “on
the top of” the tour-level decisions. Therefore, the activity-based models enjoy much improved policy

sensitivity and cross-substitution patterns within the model.

However, it is summarized here from the literature that there exist various approaches of activity-
based models and it is still quite far from reaching common ground, especially, among practitioners.
At least two major streams of the models: Rule-based and Utility-maximizing, have been popular in
academia. Both approaches showed their respective way to solve the problem of choice of daily
activity-travel pattern in a two-stage decision protocol: choice set generation and choice itself (e.g.,
Manski, 1977) but with different focuses. The Rule-based ones devote themselves to the choice set
generation, aiming at yielding a small choice set upon which a simple choice model is always used,

while the Utility-maximizing ones focus on the sophisticated representation of the choice model (Ben-
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Akiva & Bowman, 1998a).

It seems that Utility-maximizing models, exemplified by the DAS models and the CT-RAMP models, are
gradually taking the majority in practice, but it can be asserted for now that still, no one single model
has commanded universal appeal (Li, 2015). Nevertheless, activity-based models are still in the way of
advancing to methodology with greater behavioral realism, better policy sensitivity, faster
deployment, and ease of understanding. Within this process, the distinctions between the two types
have narrowed as they sought to accommodate more realistic choice representation in the sense of
both choice set generation and choice itself to represent better human behavior (Boyce & Williams,

2015).

Despite the advancements, the increasing complexity of the activity-based model systems has been
so formidable to many local planning organizations that models of the earlier generation like the Four-
Step model are still taking a considerable share in practice (Boyce & Williams, 2015). Theoretical
advantages are not always appreciated by the practitioners unless they can find out how these models
of the “new generation” could better address their specific practical needs (Davidson et al., 2007).
This might require more empirical analysis and successful implementations to spark more interest,

which is considered one of the raisons d’étre of this dissertation.

2.2 Review on Integrated Transportation Models

A system is often featured by being composed of multiple various elements that interdependently
affect each other. The urban system is undoubtfully an exemplar of the complex interconnected
structure, where transportation is no more than one of its components. It is normal to consider the
influence of others whenever there is an attempt to analyze one of the components. Integration,
nevertheless, asks to combine the involved components together into one holistic mechanism. The
concept and necessity of integration of urban systems have long been recognized as conventional

wisdom.
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Transport planning thus is also required to be analyzed as an integral part. For example, virtually all
economic and social activities require the transport of people or goods. In this sense, economics
determines most of the forms of transport, while contributions of transport to economics is also
playing a significant role there. In both academia and industry, among others, connections between
transport and land use planning are deemed more important as being closer to each other. In
Banister (2002)’s eloquent words: “transport planning must be seen as part of the land use planning
and development process, which requires an integrated approach to analysis and a clear vision of

the type of the city and society in which we wish to live”.

At a more basic level, the integration of elements within the transport system is also important in
the analysis. Integration at this level can refer to the integration of, for example, traffic networks of
different modes of travel (Givoni & Banister, 2010), but more often this refers to the integration of
travel demand and travel supply. Linkages between the demand and the supply are usually reflected
in the traffic assignment procedure that predicts traffic flow conditions under a given pattern of
travel demand and other related inputs. The other side of the linkage, namely the effects from
transportation level-of-service to travel demand, is usually carried on within the travel demand
model. Being less frequently mentioned and conducted for this level of integration is the
equilibrium between the demand and the supply, which means iterating the interactions between

the two until they converge to a stable state (Pinjari & Bhat, 2011).

These levels of integrations can be illustrated in one general travel demand-supply and land use
causal structure (Figure 2-6), where feedback effects are adequately considered, and accessibility

plays an important bridging role (see Sub-section 3.2.2).

Unfortunately, this wisdom of integration did not prevail until recent decades as they are hard to
operationalize. This dissertation considers it an important aspect of a sound travel forecasting
project and finds it necessary to be reviewed. A travel forecasting project like this dissertation

usually involves a time frame of years or decades.
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Figure 2-6. Feedback Cycle between Land Use and Transport Systems (adapted from Bierlaire et al., 2015).

Thus, a short review will be given in this section, including two parts: integration with land use, and
integration of travel demand and supply. Reviews of residential location choices and dynamic traffic
assignment models are also given briefly below. For detailed reviews, refer to lacono et al. (2008)
and Kii et al. (2016) for integration between transportand land use, Lin et al. (2008), and Adnan et al.

(2016) for integration between travel demand and supply.

2.2.1 Integrating Transport and Land Use Models

Land use models forecast primarily “the locations where urban activities occur” (Boyce & Williams,
2015), which decides in other words the spatial patterns of activity locations or facilities in the study
region. As the land use model determines the distribution of locations around the region, it decides
to a large extent the patterns of travel demand by determining the spatial separation pattern among
the activity locations. On the other hand, a change in costs of travel would affect the attractiveness

of the locations and thus has the potential to change the land use distribution in turn.

Therefore, the relationship between transportation models and land use models has long been
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recognized as being reciprocal. This reciprocal relationship is usually called the “Transportation-land
use link” (Kelly, 1994) or “Land-use transport feedback cycle” (Wegener, 2004). The models aiming

at capturing this process are called Land Use Transport Interaction (LUTI) Models.

The basic theory of the Transportation-land use feedback cycle is based on economic concepts such
as consumer behavior notions. In the 1960s, Wingo (1961) and Alonso (1964) independently
proposed two very similar ideas of attempting to formalize the relationship. In their economic
models, they argued that the money spent on commuting and housing is recognized by a rational
consumer as a tradeoff: the residential property with the best access to commuting is entitled to the
highest prices, all else being equal. Their models are very simple but did establish a fundamental
notion that transport accessibility should not be neglected but instead is one of the key elements in
the land use model (Kelly, 1994). Transport accessibility is an index to describe the level of access
convenience for a geographical unit in the study region. For this specific geographic unit, a traffic
zone for example, accessibility is typically calculated as the total travel impedance from this unit to
all other available and reachable units via the traffic network. Varieties of accessibility and other

details will be elaborated on later in sub-section 3.2.2.

Lowry (1964)’s model is considered to be the first operational urban land use model and merits some
brief word of description here to facilitate understanding. The Lowry model falls into a category
called the Spatial Interaction model which is derived from the gravity model and the principle of
entropy maximization, the same foundations used in some early travel demand models. The Lowry

model determines number of workers T;in zone iwhile living in zone jas:

_— e;w;f (tij)
Y 2iwif (tij)

Where e; is the employment in zone j, w; is the attractiveness of zone j, and f(t; ) is the travel

deterrence function that is related to tj, travel time or other measures of travel impedance between

iand j. The most applied form of the deterrence function is:

f(ty) =e Pty
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Where Bis the marginal utility per time.

Totally, the number of workers residing in zone jis:

TJ':zTiJ'
i

Besides the workers’ residential location choice, the Lowry model is also featured by including
service location choice. After the locations have been allocated, the land use model can be coupled
with a travel demand model such as the Four-Step model, which in this form becomes the first

generation of integrated transport and land use model.

Building on the Lowry and its successors’ model, Putman (1983, 1991) developed the well-known
ITLUP model that has been used practically at over 40 planning agencies (Boyce & Williams, 2015).
ITLUP model is often referred to DRAM/EMPAL framework as it includes two sub-models: DRAM and
EMPAL. A basic travel forecasting model that is equipped with trip generation and trip distribution
functions is embedded in the DRAM so that travel impedance could be incorporated into modeling

activity locations.

Later, some other integration models based on Spatial Interaction formulations such as the IRPUD
model (Wegener, 1985) for Dortmund, Germany, the LILT (Mackett, 1983) for Leeds, UK., and the
CALUTAS (Nakamura et al., 1983) for Tokyo, Japan, have been proposed and applied. However, few
models of this type remain to the present for their poor forecasting performance (lacono et al., 2008).
This is probably due to mainly the inadequacy of the underpinning theory and limitation in
representing broader economic activities (Kii et al., 2016). These criticisms introduced the next

generation of transport-land use integration models, which is based on the RUM framework.

LUTI models emerged following the introduction of applying residential location choice with
discrete choice models (e.g., McFadden, 1978). Of this model stream, the salient feature is replacing
the theoretically flawed gravity model with the RUM-based MNL model. Notwithstanding, some

models do have some unique elements that distinguish them from others. The TRANUS (de la Barra,
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1989) incorporates explicitly a land development model for developers and improves the travel
model by distinguishing traffic flow by the different times of day and travel modes. The TRANUS is
also one of the first models to apply logsum type accessibility in bridging the travel model and land
use model. The CATLAS (Anas, 1982) is another exemplar of this stream, which uses an NL model
form for choosing a workplace, residential location, and travel mode together, from which logsum
type accessibility is calculated to indicate the change in household welfare. The CATLAS framework
was later evolved into an enhanced model, the METROSIM (Anas & Arnott, 1994) which expands the
model function to include such as commercial real estate and non-work traveling. An alternative
model, the MUSSA (Martinez, 1992, 1996) has features such as adopting the form of an auction for
the land market, players from both sides bid against each other for building stock. This is called the
“bid-rent” framework, which has been widely used in some more recent land use models. The
MUSSA also emphasizes itself in higher spatial resolution and more detailed transit network
representation, which is one remarked improvement with the adoption of random utility theory as

it allows for developing models at a disaggregated level.

Since the 1990s, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 of the U.S.and
advances in computing power sparked a paradigm shift into the current state-of-the-art type of LUTI
model: agent-based microsimulation models. This specific stream of model attempts to simulate the
behaviors and interactions dynamically over time at a individual level so that the whole urban
system and its changes can be represented from the “bottom-up”. These models emphasize
especially the feature of being disaggregated as well as dynamic. Two models from this category

are introduced here as examples.

The UrbanSim (Waddell, 2000; Waddell et al., 2003; Bierlaire et al., 2015) is the currently most used
LUTI model by MPOs in the U.S. (Kii et al., 2016), which suggests that it is one of the most flexible
LUTI models to date. The original version of the UrbanSim, according to lacono et al. (2008), still falls
in the category of econometric LUTI model despite having adopted many microsimulation features

in some of its sub-models. Its improved version managed to obtain completed microsimulation
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features and is said to be the only model that succeeded in completing the transition. The UrbanSim
pursues parcel-level spatial resolution, which is much finer, if not the finest, than other existing
models. Land markets are modeled following the “bid-choice” framework, which is similar to the
MUSSA. The whole framework consists of six sub-models: the Real Estate Price model to compute
the prices of real estate goods; the Household Transition & Relocation model to describe the
evolution of households by time and whether they are planning to move or not; the Household
location model to determine the specific location for household moving; the Job Transition &
Relocation Model to describe the evolution and willing to move for firms; the Job Location Model to
determine the specific location for the firm moving; and the Real Estate Development model to
decide the new supply of real estate goods (Bierlaire et al., 2015). All these sub-models apply the
MNL model except that the Price model computes the results from a Hedonic Model. Besides, the
UrbanSim has been coded into an open-sourced software system that greatly increases its ease of
use and transferability, which is found by a survey to be the practitioners’ priority in choosing LUTI
models (Waddell, 2011). However, one important limitation of UrbanSim is that it does not include
a transport model component but rather offers an interface to extend it with an exogenous

transport model.

The ILUTE model (Salvini & Miller, 2005) stands for one of the most completed microsimulation
models. Four contiguous components represent the core of the ILUTE: land use, automobile
ownership, location choice, and activity-travel patterns. Multiple modeling methods are
implemented for these components to cope with different choice contexts, these methods
including random utility models, rule-based models, learning models, and state transition models.
The most worth-mentioned feature of the ILUTE model is explicitly treating land markets in a
disequilibrium fashion, which means that no equilibrium is sought and even no market clearing is
assumed in their modeling. Also, the activity-travel patterns component in the ILUTE is often

coupled with the TASHA, though the travel supply component is absent.
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2.2.2 Integrating Travel Demand and Travel Supply

Travel supply refers to transport services provided by the urban system. Specifically, the services are
delivered by the combination of infrastructure, vehicles, and the operators or the management
system of the former two (Ortuzar & Williumsen, 2011). Sometimes, travel supply also simply refers

to the level of the services, or metrics representing the network conditions.

The interaction between travel supply and travel demand can thus be stated in the following terms
(Ortuzar & Williumsen, 2011): consider in a transport system, S for the level of service, Q for the
network capacity, V for the traffic volume, and M the management system, then there can be

assumed a relationship that:

S=fQV.M)

Where network capacity Q is expected to be dependent on the management system M and levels

of investment I:

Q=fMM,1
As for travel demand D, one would expect in most cases need for travel should depend on the spatial

pattern of activity facilities A and the level of service S of the transport system:

D =f(5,4)

Since traffic volume V is strongly related to travel demand D, combining the above equations would
thus lead to a problem of finding the equilibrium point, which is defined as “find(ing) a demand
pattern generating network conditions that, in turn, cause the same demand pattern to re-appear”

(Nagel & Flotterdd, 2012).

Therefore, seeking the travel equilibrium state would more sufficiently reflect consistent travel
forecasting and thus improve its reliability. Although this statement seems correct whatever the
policies concerned in one forecasting problem, the task of finding the equilibrium is often not easy

due to the complexities of the relationships above.
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In the conventional Four-Step Model, the first three steps forecast the changes in the travel demand
side while the last step forecasts the influence on the travel supply side. So, if exercised in a full
iterative process, the Four-Step Model should serve the purpose of seeking equilibrium (Lin et al.,
2008). However, the Four-Step Model usually fails to adequately fulfill this task not only because the
basic specification of the Four-Step Model incorporates an iterative process limited to route choice,
but more fundamentally also due to its shortcomings in applying trip-based method and static
traffic assignment method: e.g., the feedback for the stages of destination, mode, and whether to

travel “has often been introduced but not in a consistent and convergent manner” (McNally, 2007).

For the travel demand side, in replace of the trip-based models, activity-based models are
considered more appealing with more behavioral reliability. Many operational activity-based travel

demand models have been proposed and applied around the world (Section 2.1).

For the travel supply side, static assignment methods have been implemented as a convention for
a long time. As mentioned, traffic assignment is the procedure to load the travel OD pairs onto the
traffic network, which generally refers to modeling the action of “route swapping” by drivers. This
process needs to be solved in iteration (Sheffi, 1985) by repeatedly loading the demands, to reach
an equilibrium state for subsequent analyses. Different objective functions adopted throughout the
iteration process would lead to different equilibriums in the assignment procedure. For example,
when assumed that all routes used should have the same minimum cost, which means no one can
unilaterally improve his or her situation, a User Equilibrium would be obtained (Wardrop, 1952). This
equilibrium is limited in route choice so should not be confused with the aforementioned travel
supply-demand equilibrium, though they can be accommodated in a theoretical framework that

“combines” all four steps together in iteration (e.g., Safwat & Magnanti, 1988).

The feature of being “static” in conventional traffic assignments means that neither the OD pairs nor
the network conditions are treated as time-dependent. As the conventional trip-based travel
demand models usually do not identify temporal variations more than peak and off-period periods,

the static traffic assignment should meet most of the requirements then. Apparently, this is no

51



longer the case currently. For example, policies such as congestion pricing intuitively demand a
better temporal resolution, this is in essence a call for accommodating travel demand dynamics in
the supply model. Against this background, dynamic traffic assignment emerges where both

demand and network conditions, and travel times are time-dependent.

Despite the advancements in both demand and supply models, much of the research efforts have
been achieved relatively independently (Lin et al., 2008) due to their complexities. To exploit the
advantages from both sides and to generally improve the travel forecasting power of a model
system, it is essential to execute the travel supply-demand equilibrium process with these two
advanced approaches. In this sense of integrating the activity-based travel demand model and
dynamic traffic assignment model, a limited number of applications have been published, some

exemplars are introduced below.

Integrations in early implementations were undertaken in a so-called sequential integration
approach, which means that the activity-based travel demand model and dynamic traffic
assignment model are run independently and coupled together in a not rigorous way (Pendyala et
al., 2012b). For example, Lin et al. (2008) built an integration of the activity-based model CEMDAP
(Bhat et al., 2004) with a cell-transmission-based dynamic assignment model VISTA (Ziliaskopoulos
& Lee, 1996) and examined the convergence properties with two experimental grid networks. Other
examples include combining PCATS (e.g., Kitamura & Fuijii, 1998) and DEBNetS (Kitamura et al., 2005)

for the Japanese context (lida et al., 2000).

Pendyala et al. (2012b) explicitly addressed the naiveness of the sequential integration by running
the components into one same framework, called dynamic integration. They proposed the
SimTRAVEL, a modeling system adopting the integration of OpenAMOS, an improved version of
AMOS (RDC, 1995; Kitamura et al., 1996) and MALTA (Chiu & Villalobos, 2008). The model was

evaluated in Arizona, U.S.

Subsequent research projects have sought to develop a model platform where the supply-demand
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equilibrium is more closely integrated inside so that application efficiency would greatly be

improved. This is achieved by better software designs and data constructs.

MATSim (Horni et al., 2016) is an agent-based transport simulation model and is designed to handle
large-scale networks and millions of trips. From this standpoint, implementation efficiency has been
highlighted. Lies in its core is an iterative process called a population-based co-evolutionary
algorithm, which attempts to solve the supply-demand equilibrium problem. The model enjoys the
reputation for having been applied widely around the world and is still evolving to incorporate
increased functions via its open-source software architecture. One conspicuous limitation of its
algorithm exists as the travel demand part fails to account for the trip generation. Partly to this end,
some academic integration efforts that employed MATSim as no more than a traffic assignment
simulator can be found. For example, Hao et al. (2010) apply a TASHA (Miller & Roorda, 2003) and
MATSim integration, and Ziemke et al. (2015) couple the CEMDAP (Bhat et al., 2004) with MATSIM, a

simulation platform that will be elaborated in Sub-section 3.2.1.

FEATHERS (Bellemans et al., 2010) is a dynamic agent-based microsimulation framework, designed
for Flanders, Belgium to replace its Four-Step Model. It is a platform of modular design where its
demand model component (called Schedule Module) can be implemented with different

algorithms, such as ALBATROSS (Arentze & Timmermans, 2004).

Auld et al. (2016) integrated ADAPTS (Auld & Mohammadian, 2009; 2012) and a queue-based traffic
simulator DTAlite (Zhou & Taylor, 2014) into one unified framework called POLARIS. It emphasizes
itself in forming a complete, agile, and extensible software. The use of the Intelligent Transportation

System was tested with the model system in the Chicago area, Illinois, the U.S.

Finally, the model system of SimMobility (Adnan et al. 2016) represents one of the most
sophisticated model systems of this stream. The Singapore-based model managed its great
ambition to integrate long-term land use model UrbanSim (e.g., Waddell et al., 2003), mid-term

travel demand model DAS (e.g., Bradley et al., 2010), mid-term dynamic traffic assignment model
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DYNAMIT (Ben-Akiva et al., 2010), and a short-term microscopic traffic simulator MITSIM (Yang &
Koutsopoulos, 1997) for microlevel vehicle control such as lane change behavior in 0.1-second
resolution. These models were respectively enhanced and combined into a model system, which

has been adapted to the Singapore context.

223 Summary

As a complex system, the urban transport system is made up of various dependent sub-model
components. These components are intuitively demanded an integration effort to exploit their real

potential and yield more reliable travel forecasting results.

Nonetheless, it was not until recent decades that operational integration models emerged. This is of
course partly due to the rising need for testing travel policy with increasing complexity, but also
partly due to improvement in computation power and data quality. Within this trend, Lee (1973)'s
well-known Requiem for Large-Scale Models seems no longer to hold anymore. It is expected that

the next-generation travel models with higher forecasting power would be widespread in practice.

Unfortunately, travel forecasting efforts are becoming so sophisticated, if not formidable, that
hinder other researchers and practitioners from comprehending the mechanism inside the “black
boxes”. The complexities of the integrated models are way above the level of the activity-based
travel demand model (introduced in the last Section) for they usually involve expertise in other fields
such as computer science and software engineering. Therefore, ease of understanding, use, and
transferability should deserve more attention, which are sometimes considered more important

than theoretical soundness and advancements (Waddell, 2011).

Despite some sense of uneasiness, it still should be confirmed that things are moving in the right
direction in this research area. We shall conclude the section with a quote from NRC and TRB (2007):
“Travel models can be improved by being based on a more comprehensive understanding of the

activities of households. Also needed is a more complete representation of the supply-side network
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to account for the details of congested operations throughout the day. No one new modeling
approach can address these and other needs. Rather, a suite of related approaches, taken together,
shows promise for greatly improving modeling practice. These approaches include improved land
use modeling, tour-based models, activity-based models, discrete-choice modeling, traffic micro-

simulation, and dynamic traffic assignment”.

23 Review on Automated Vehicles

The AVs are expected to bear the potential to influence society in a rather complex way: both
benefits and side effects have been anticipated by various published research and reports. A basic

picture of what the literature has found is deemed necessary.

Forecasting the implications of AVs should not be an exception to the transport demand-supply
framework. Impacts on travel demand are assumed to occur following the change in travel supply,
while in the longer term, impacts are also likely to extend to land use. Therefore, this review is
organized to state the current research efforts that have been done concerning 1) AV’s general
development background; 2) AV’s characteristics as a change in transport supply; 3) AV’s impacts on
travel demand, or travel behavior; and 4) AV’s long-term impacts on land use. These impacts are
studied by the existing literature depending on certain AV operating models, i.e., PAVs, SAVs, SARs,
or a combination of them. Our focus lies on the PAVs due to the research scope of this dissertation,

but several significant works on the other two types will also be mentioned.

Comprehensive reviews can be referred to, for example, Milakis et al. (2017), Soteropoulos et al.

(2019), and in particular a comprehensive summary from Harb et al. (2021).

23.1 Development of Automated Vehicles

The topic of automated vehicles is not brought up all of a sudden, the conception and development
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of automated vehicles could be traced back more than a century.

Early efforts of self-driving cars have been devoted to demonstrating the potential of radio
technology. After the mass automobile production in America during the early 20th century, in 1925
and 1932, a radio-control sedan was designed to be remotely operated by a person in another car.
Although the so-called “Phantom Auto” differs from the current self-contained image of an
automated car, it is recorded as the first attempt to operate a vehicle without a driver or occupant

(Jenn, 2016).

In the 1950s, people began to envision a world full of driverless cars: a famous advertisement was
created by H. Miller in 1957 (Figure 2-7). Its original text stated: “ELECTRICITY MAY BE THE DRIVER.
One day your car may speed along an electric super-highway, its speed and steering automatically
controlled by electronic devices embedded in the road. Highways will be made safe—Dby electricity!

No traffic jams...no collisions...no driver fatigue.”

Figure 2-7. Image of Automated vehicles in 1957 (Anderson et al., 2014).

During the 1970s, several attempts that better fit the current automated car image were made. For
example, the Stanford Cart was configured successfully as an automated unit. The cart was

programmed to move one meter while pausing for ten to fifteen minutes for image processing and
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route planning. In 1979 it managed to cross a room full of chairs without human intervention in

about five hours. The idea to use video information later proved to be a typical input in AV research.

In the 1990s, self-contained vehicles emerged as a result of computer technological advancements.
The Ernst Dickmanns team at Bundeswehr University Munich equipped a car with several driverless
prototypes (a supercomputer and image analyzing system) and named it VaMP. The VaMP made a
highway round-trip travel between Munich, Germany, and Odense, Denmark for 1,758 km in 1995,

where 95% of the trip by distance was run automatedly with video cameras.

With these developments’ foreshadowing, the DARPA (U.S Defense Advanced Research Projects
Agency) Grand Challenge accelerated the developments of automated vehicles remarkably. The
prize competitions were held 3 times and heralded a faster pace in AV research & development and
invited players from many commercial automobile manufacturers as well. The challenge aroused

public awareness of this novel conception to a perhaps unprecedented extent.

In 2009, the launching of the Google Self-Driving Car Project, which later became Waymo, marked
another constructive development with the help of the platform of the giant company. The team
was initially composed of some of the winners of the Grand Challenge and led by Sebastian Thrun
(who was involved in developing Stanford Cart in the 70s) from Stanford University. In late 2018,
Waymo became the first company in the world to launch a public self-driving ride-hailing service.
Waymo now has claimed more than 20 million self-driven real-world miles on public roads by 2021

(Waymo, 2021).

Aside from Google, the last decade has featured many more players joining the game. Almost all
large vehicle manufacturers and some technology companies have been suggesting their interests.
These companies have announced their respective ambitious goals for launching Level-4 or higher
(SAE, 2021) AVs. For example, in 2012 Sergey Brin, the co-founder of Google, commented that “You
can count on one hand the number of years until ordinary people can experience this” (Niccolai,

2012).
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Unfortunately, at present these companies have already delayed their timeline. “The latest
announcements indicate that the first Level 3 highway systems will hit the market at some point
from 2021 to 2024...Technological challenges and regulatory issues are likely to account for most
of the delays” (Doll et al., 2020). Litman (2021), in this continuously updated and well-cited technical
report, predicts that level 5 AVs could be commercially and legally available by the late 2020s. But it
would not be until the 2040s or even longer that AVs become common and affordable so that most

impacts can be significant.

To summarize, the current market has become partially a show business during the past several
years, which has broadened public awareness and boosted technological advancements. Although
still in the struggles, efforts by both academic and industrial fields lead us to believe that this
technology is close to maturity and commercialization as more and more testing projects are being
exposed. Therefore, we believe to study the implications of AVs in advance is of necessity and

significance.

2.3.2 Transport Characteristics of Automated Vehicles

AVs distinguish themselves by a common feature whatever their operating models would be:
humans will yield manual controllability to the robotics or computers. All the following AV impacts
are derived from this salient feature. To be more specific, this feature can be further clarified by two
parts: yielding manual controllability and robotic control, as they presumedly cause some different
impact independently. For instance, the impact on capacity can hardly be explained to be caused
by merely yielding manual controllability. Instead, it is the robotic control that offers us a smoother
traffic flow in most cases. Another distinction between these two characteristics is that most impacts
caused by the first characteristic probably appear only after the realization of full automation but

the impact from the second could take effect even in partial automation.

With these features, AVs are considered “a technological innovation which will allow organizing
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transport supply in a radically different way” (Soteropoulos et al., 2019). Changes in transport supply
directly indicate potential impacts on generalized travel costs, for example, travel time per se, travel
time impedance level (value of travel time), mobility availability, and monetary costs. As AVs are not
yet operated in general, empirical data are impossible to be collected hence these transport
characteristics vary to a large extent by different assumptions. This section is thus to give a brief

review of how these characteristics would presumably be.

2.3.2.1 Safety

The first and most important effect is the general improvement in safety, which is considered the
biggest incentive for promoting this technology. By taking over the driving tasks, a fully automated
vehicle could avoid most of these human-related crashes with advanced assistance and/or
automated technologies. According to the National Motor Vehicle Crash Causation Survey (Table 2-
1; Singh, 2015), of the estimated 2,189,000 crash events in the U.S. during 2005-2007, around 94%
are attributed to human errors. Among these driver-related crashes, recognition error (e.g.,
inadequate surveillance, distraction), decision error (e.g., following too closely), performance error
(e.g., poor directional control, panic), and non-performance error (e.g., sleep, heart attack) are listed

as the reasons.

Table 2-1. Critical Reasons for Vehicle Crashes (adapted from Singh, 2015).

. i Estimated

Critical reason attributed to
Number Percentage (95% confidence)

Drivers 2,046,000 94% (£ 2.2%)
Vehicles 44,000 2% (+ 0.7%)
Environment 52,000 2% (£ 1.3%)
Unknown Reasons 47,000 2% (+ 1.4%)
Total 2,189,000 100%

Focuses of this stream of research lie in proving the effectiveness of driving assistance systems and
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vehicle-connected technologies. For example, several controller optimization algorithms adapted
to vehicle-connected technologies have been evaluated to suggest improved safety. Khondaker
and Kattan (2015) designed a variable speed limit control algorithm and used a microscopic
approach to achieve multi-objective optimization. A surrogate safety measure “Time to Collision”
was employed to measure the safety level. This research showed at most an 11% improvement in

“Time to Collision” when applying this algorithm under a 100% AV penetration rate.

Some studies questioned the safety improvements of AVs in partial automation or insufficient
market penetration. For example, Strand et al. (2014) experimented with a Level 3 moving base
driving simulator involving thirty-six participants, to test their reaction to a sudden automation
failure. They found that human reaction time could be no less than 2.2 seconds to resume control,
suggesting the potential peril in driving. This, however, should not be a problem in a full-automation

context. Also, malicious hacking could impair AV security, which should be of concern (Litman, 2021).

In summary, in a full automation scenario with considerable market penetration, it is believed an
improvement in traveling safety is very likely. This benefit, however, is argued to be impossible to
confirm and precisely measured until up to hundreds of billions of miles have been driven (Kalra &
Paddock, 2016). It also has been rarely considered in measuring other impacts resulting from the
AVs, as it is difficult to conceptualize other than in the cases of studying, for example, mode choice

preference and crash-related transport delays.

2.3.2.2 Travel Impedance and Value of Travel Time

Value of travel time is a concept defined as the equivalent amount of money a traveler would pay
to change one unit of time (e.g., Jara-Diaz, 2007), indicating impedance to travel considering varied

income levels and “time value” among travelers.

It is assumed that travel impedance and value of travel time would be reduced (i.e., the disutility of

travel time would become less negative) due to yielding manual controllability. Especially, the ability
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to engage in productive activities while traveling not only generates positive utility in doing so but

also eliminates the negative workload of gripping the steering wheel.

There are many studies in the field of traffic psychology: in a review research by de Winter et al.
(2014) where a meta-analysis of thirty-two papers was conducted, they reported that self-reported
workload (e.g., staying vigilant to monitor the environments) in highly automated driving is around
52% of manual driving, and the number of self-paced in-vehicle display tasks (e.g., menu navigation
and figure comparison) completed under highly automated driving is 261% of manual driving’s case.
Cyganski et al. (2015) conducted a stated-preference survey with 1,000 respondents in Germany,
they found that no less than 30% of respondents saw an advantage in working on a fully automated
AV, 60% would converse with their companions and 40% would consider to be relaxed and even

sleep.

Many published modeling research adopted this hypothesis to assume a decrease in travel
impedance, despite great variations in the extent of the change and the treatments in their models.
For example, Childress et al. (2015) assumed a 35% decrease in actual travel time for AV users; Liu et

al. (2017) assumed a 50% decrease in the impedance parameter of in-vehicle travel time.

Research efforts have been also dedicated to quantifying the specific value of travel time savings,
where stated preference (SP) methods are applied commonly. For example, Steck et al. (2018) found
that for all low-, middle-, and high-income groups around 31% decrease in the value of travel times
in PAV commuting trips can be observed via an SP survey and Mixed Logit model. A reduction rate
of 41% was reported by the same research team in another paper (Kolarova et al,, 2019). Concerning
spatial variability, Zhong et al. (2020) claimed the value of travel time reduction of 18%, 32%, and

24% in PAV mode, for respondents in rural, suburban, and city center areas, respectively.

The reduction rate was observed less for SAV mode: Steck et al. (2018) reported a 10% decrease for
allincome groups while Zhong et al. (2020) summarized the rates of 8%, 14%, and 13% for the three

types of area. An exception here is Krueger et al. (2016), where around 35% and 10% gains in value
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of travel time for SAV and SAR, respectively, are found via an SP survey in Australia.

It is worth noting that, however, travel impedance and value of travel time are found identical or
more “negative” compared to HVs in some literature especially when it comes to the cases such as
PAV leisure trips and SAV. For example, Kolarova et al. (2019) reported that the value of travel time
for PAV leisure trips is basically the same for all three income groups while for SAV trips even
increased slightly; Correia et al. (2019) even found a 29% increase for a PAV that internally designed
for leisure activity, but that their revised theoretical framework (Pudane & Correia, 2020) still
suggests a decrease in value of travel time using Jara-Diaz (2007)'s microeconomics model.
Regarding the counter-intuitive findings above, Singleton (2019) and Rashidi et al. (2020) provided
thoughtful arguments and suggested that whether AV would reduce travel impedance has not yet

reached a consensus.

2.3.2.3 Acquisition and Operational Cost

To investigate how the acquisition and operational cost of AV would be is of concern in forecasting
car ownership, mode choice, and specific operational models in the future. How AV price would be
is highly unsure as for now the equipment required for AV are still in research and development. As
general forecasting, Litman (2021) predicts that probably several thousand U.S. dollars (USD) in the
vehicle purchase price; hundreds of USD in annual services and maintenance costs, which on
average cost 0.80-1.20 USD vehicle mile (55-82 Japanese Yen, or JPY per km) would occur for PAV in
the initial stages when AV being commercially available; and 0.60-1.00 USD per vehicle mile (41-68
JPY per km) after the commercialization becomes mature. These predictions coarsely fit with
Daziano et al. (2017), who found that the average household is willing to pay (WTP) about 3,500 USD

and 4,900 USD for partial automation and full automation, respectively.

In contrast to the likely increasing acquisition cost, the operational cost for in particular SAV is

assumed to be far much lower than the current taxis since no labor cost for drivers would be needed
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anymore. Much literature has been devoted to this issue. To name some recent ones, Bosch et al.
(2018) presented a comprehensive and rigorous cost structure analysis of AVs in detail. In
considering comprehensive cost forms including cleaning, fuel, maintenance cost, etc., in the Swiss
context, they estimated 0.504 Swiss Franc (CHF) and 0.407 CHF per km cost for PAV and SAV,
respectively (56 JPY per km or 0.81 USD per mile; 45 JPY per km or 0.66 USD per mile). As such, the
PAV cost is just 4% more than its conventional human-driven counterpart, while the SAV cost is

about 15% of current taxis.

Additionally, Chen et al. (2016) gave a rigorous financial analysis for shared automated electric
vehicles. They argued a total operational cost ranged from 0.417-0.486 USD per mile (29-33 JPY per

km) with different settings of battery life and charge required time.

2.3.2.4 Road Capacity

AVs could have a positive effect on free flow capacity, as a result of advanced driving assistance
systems (in level 3 or higher). The automated module could allow a short time headway between
vehicles, smoother lane change, and accelerating and decelerating behaviors, and thus avoid
inefficient start-and-stop traffic behavior. The specific automation algorithm or controller design

influences the improvement level a lot.

Many academic efforts have been committed to studying this topic. For example, Huang et al. (2000)
designed a driving controller for automated vehicles to simulate mixed traffic with human-driven
vehicles. They observed a peak flow of 5,000 vehicles per hour per lane on the freeway under the
mixed traffic condition where the share of AVs is no less than 70%. Fernandes et al. (2015) proposed
an algorithm to maintain constant spacing among an automated vehicle platoon and tested it with
MATLAB and SUMO simulators. According to their results, the capacity of the 8-vehicle platoon
could rise to 7,200 vehicles per hour (one passenger per vehicle), which is even higher than the

capacity of light rail and bus.
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It is also argued that vehicle-connected technology (Cooperation Adaptive Cruise Control, CACC)
could increase capacity on freeways to a considerable level (e.g., Shladover et al., 2012), but this
effect is quite sensitive to market penetration. In Shladover et al. (2012)’s study, a 100% CACC share

would almost double the capacity gain of a 10% CACC share case.

However, some literature suggested the opposite. Forexample, Le Vine et al. (2015) argued that AV's
dynamics (acceleration rate; turning speed) should not surpass those for the light rail transit or high-
speed rail as car passengers tend to feel more discomfort than car drivers do. Such settings could

produce decreased intersection capacity and increased delay compared to the case of HVs.

2.3.3 Impacts of Automated vehicles on Travel Behavior and Traffic

Impacts on travel behavior refer to potential changes in travel demand, mainly individual- or
household-level travel-related choices. Most of these impacts are the associated consequence of
many other factors, such as the individual’s sociodemographic attributes, the built environment,
and the direct impact discussed in the last section. Therefore, these impacts are regarded as
“induced” and remain even more uncertain as they depend on the assumptions of the AV

characteristics.

2.3.3.1 Vehicle Ownership Choice and Transport Mode Choice

With the addition of a new mobility alternative, the travel mobility market penetration and car
ownership in the future would inevitably shift. However, the specific quantified change is far from

clear at present.

The choice to own an AV privately or not is majorly dependent on the specific use pattern in the
future. Individuals and households could choose among owning a PAV, using SAV every day while
not possessing one privately, and combining the former two at the same time. In this sense, vehicle

ownership choice is largely associated with transport mode choice, which has long been recognized
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as one of the conventional wisdom (e.g., Ben-Akiva & Lerman, 1974).

SP methods have been used vastly regarding these personal preferences on these novel mobilities.
For example, Haboucha et al. (2017) conducted an SP survey distributed to 721 individuals across
Israel, Canada, and the U.S. Three options were presented to the respondents: to keep possessing
and using HV; to purchase and use a PAV; to subscript and use SAV system. As result, they found in
total 44% chose to keep regular cars, with 32% for PAVs and 24% for SAVs, given the attributes like

HV costs 30,000 USD and PAV costs 34,500 USD.

Similar research efforts can be found in Lavieri et al. (2017), who studied future intention on using
PAV, SAV, both, or neither, as a function of individual lifestyle preferences, attitudinal factors, and
current use of disruptive transportation services. The GHDM approach (Bhat, 2015) based on
multinomial Probit kernel model and latent variable structural equation model, etc. was adopted.
As result, they found that their respondents were generally not inclined to use AV as 68.5% showed
interest in either, with their alternative specific constants being negative; Residents in higher density
neighborhoods and with fewer current vehicle ownership tended to favor SAV; People with green

lifestyle and technological savviness (latent variables) would embrace both PAV and SAV, etc.

The research above was offered in the scope of preference level while did not suggest general
predictions of market penetration. To address this, Bansal and Kockelman (2017), for example,
utilized a Monte Carlo simulation based on their survey with a scenario setting with the incremental
annual change in WTP and price reduction. According to their research, the market share of level 4
automation in 2030 would be 19.7%, and 37.0% in 2040. Their assumption of the price for
automated equipment is $13,947 in 2030 and $4,863 in 2040, given a 10% annual price reduction
rate. Lavasani et al. (2016) employed a Bass diffusion model, an estimation based on historical sales
of hybrid electric vehicles, to forecast the market penetration of AVs. According to them, the
penetration rate is assumed to be 8.0% in 2035 and 36.0% in 2040. Neither research differentiated

PAV and SAV in their analyses.
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As result, different AV-using patterns would lead to a change in the total level of vehicle ownership.
Some studies investigated how many HVs are required to function similarly to one SAV, assuming
that travel demand keeps unchanged. Fagnant and Kockelman (2014) applied an agent-based
simulation model to examine the feasibility of SAV service in a grid-based synthetic city. In their
warming up simulation, they evaluated the optimized fleet size with a rule that generates a new SAV
for every traveler who has been waiting for at least 20 min after sending the request. As a result, they
found that 1,688 SAV meet the 60,551 agents’ demand. With each licensed driver in the US an
average generating 3.02 trips per day and owning or leasing 0.99 household vehicles, 19,849
vehicles are presumedly required to meet the 60,551 trip demand. Given that only 1,688 SAVs are
required according to their simulation, a replacement rate of 11.8 is derived. Similarly, the
replacement rates for SAV of 9.3, 9.0, 10.77 were estimated by Fagnant et al. (2015), Chen et al. (2016,

for electric SAV), Fagnant and Kockelman (2018, for SAR), respectively.

Bosch et al. (2016) also examined the optimized fleet size of SAV. By sampling the incremental level
of actual Switzerland travel demand and inputting incremental supply level into MATSim, they
concluded that a fleet size of 10% of the demand size is necessary to ensure 95% of the requests are

served within 10 min in a large-scale demand level.

Few investigations have been done regarding the ownership change for PAV. Vehicle ownership is
argued to be potentially reduced as PAV would render more efficient intra-household allocation.
Zhang et al. (2018) solved this by using a greedy scheduling algorithm to determine the minimum
number of PAV required to satisfy all the travel demands in one specific household. They found that
about 18.3% of the households from their survey have the potential to reduce vehicle ownership

while maintaining the current travel schedules.

Some other research predicted mode shift through simulation approaches with various
assumptions on AV characteristics and ownership ratio. For example, Liu et al. (2017) identified the
modal shift effect in SAV via simulation with MATSim. They first calculated the optimized SAV fleet

size based on Bosch et al. (2016)’s study and then employed MATSim’s iteration process to simulate
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individual choices. With certain values of travel time settings, they found 50.9% of trips turned into
SAV when the fare rate was set at 0.31 USD (34 JPY) per km and 10.5% with 0.62 USD (68 JPY) per

km.

To summarize, despite that this research topic have to be conducted based on multiple assumptions
of AV characteristics, so far AV mode choice preference has been studied extensively through SP
methods. With the preference modeled, applying agent-based simulation methods is widespread
to acquire specific modal shift predictions. Yet, with the concerns in the unmatured technique, we
might question the results of the modal shift and vehicle ownership from the SP surveys. If the
present preferences on ownership would hold, AVs seem very unlikely to prevail. One explanation
for that could be the results are subject to hypothetical bias, the deviation from real markets with a
stated preference survey (e.g., Hensher, 2010; Fifer et al., 2014). Also, it could be suggested that
vehicle ownership choice accumulates more uncertainties and hence SP methods might not be the

best idea. We expect further studies assessing AV ownership choice via modeling approaches.

2.3.3.2 Travel Destination Choice, Travel Generation Choice, and Travel Pattern Change

Following the travel demand and supply relationship, AVs are also assumed to have impacts on
other travel-related choices including travel destination choice and travel generation choice. With
AVs as a new alternative available in travel mode choice, 1) those who cannot or are not willing to
drive themselves could reconsider their trip-making decisions; 2) those who suffer from driving
burden so chose a convenience store nearby for shopping could select a farther shopping center,
etc. These are usually referred to as “induced travel demand”. Further, individual- and household-

level daily travel patterns could be changed as a result of combining these decision changes.

The existing literature provided very limited understanding concerning these dimensions of choices,
except for those induced by those who cannot drive: Harper et al. (2016) established three demand

wedges for three groups that might be caused by the adoption of AVs: people who cannot drive for
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physical, legal, or financial reasons (including who does not have a license); the elderly over 65 and
without medical problems; adults who have a medical problem. By applying these wedges to the
2009 National Household Transportation Survey (NHTS), they found in total an upper bound of 295

billion miles or a 14% annual increase.

It is postulated that the scarcity of this research is because most of the agent-based simulation
models that are used within the AV topic do not incorporate these dimensions. Both destination
choice and travel generation choice are usually involved with a large choice set, which introduces
more difficulties compared to travel mode choice. Therefore, activity-based travel demand models

are typically employed in examining these issues. Two notable works are introduced below.

Childress et al. (2015) pioneered using an activity-based model to explore the impacts of AVs. The
study employed an activity-based travel model, SoundCast (PSRC, n.d.) which is built on DAS
structure to the Puget Sound area, Washington, U.S., as its main methodology. Four AV scenarios
concerning capacity change, parking cost change, and value of time changes were evaluated to
suggest short-term implications. Apart from the modal shift, the authors found at most about a 4.9%
increase in daily trip per person, around 14.5% in average trip length, and 19.6% in overall distance
traveled, all of which were embedded with the hypothesis that AV could make trips with less

impedance.

Vyas et al. (2019) provided some other valuable insights with much more treatments included to
incorporate the features of AVs. They presented a scenario-based analysis on potential AV
implications in Columbus, Ohio, the U.S. using an activity-based travel demand model CT-RAMP. The
analysis enjoyed some sophisticated features of CT-RAMP compared to DAS. For example, a school
escorting model was explicitly incorporated so that around a 20% decrease in escorting activities
can be observed in their scenarios. While other activities than escorting increased by around 1-3%
according to their results. As for the travel distance, increasing rates of around 3% and 4.5% are
found in the scenarios of 25% and 50% bonus of travel time impedance, respectively. The results are

more conservative than what was found by Childress et al. (2015), the authors argued that it is
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because of, for example, the incorporation of time-space constraints in the destination choices of

CT-RAMP.

Individual daily travel pattern is well-recognized to be subjected to household-level schedule
coordination. PAV by its features has the potential to be more efficiently allocated among each
household. This should not only affect household vehicle ownership (Zhang et al., 2018) but also
could lead to Individual-level daily travel pattern adaptations such as a schedule shift to use AVs.
Research regarding this intra-household vehicle sharing problem is few in the AV context so far,
some efforts can be found in, for example, Correia and van Arem, (2016), as well as Cokyasar and

Larson (2020).

To summarize, despite uncertain changing rates to come, longer and more trips are expected with

the prevailing of AVs in the future according to the existing literature.

2.3.3.3 Impacts on Traffic Flow Characteristics

Traffic performance metrics typically refer to those level-of-service indicators such as link travel time,
vehicle travel distance, and delays. Extensive literature is available on this topic, especially on travel

distance, with the help of agent-based simulation methods.

Vehicle travel distance is often measured by total vehicle distance traveled, the aforementioned
studies by agent-based simulation models for SAVs have given many insights: for MATSim or other
agent-based simulation studies, induced total vehicle distance traveled of 10.7%, 8.0%, 8.9%, 6.6%,
9.8-15.1% is identified by Fagnant and Kockelman (2014), Fagnant et al. (2015), Fagnant and
Kockelman (2018) and Liu et al. (2017), respectively. In Chen et al. (2016), the distance to charge
stations is also included in the electric vehicles case, an induced VKT of 14.0% is found with shared
automated electric vehicles given 129 km travel per every 30 min charge time. Zhang et al. (2015)
focused on parking demand change. By using an agent-based simulation model of a 16 km X 16 km

grid hypothetical city, they observed a 63% total distance traveled increase induced by SAV’s
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cruising behavior: when a 30-min empty cruising time is required before stopping (i.e., parking)

comparing with a no cruising time scenario.

For the studies above, increased travel distance is mainly the consequence of empty driving of SAV.
Factors such as travel destination change were mostly not incorporated. Some exceptions include
Childress et al. (2015) and Vyas et al. (2019), which have been introduced in the last sub-section.
Another notable research is by Auld et al. (2017), who employed an integrated travel demand and
traffic simulation model framework, POLARIS (Auld et al., 2016) to analyze the effects of AVs for
Chicago, lllinois, the U.S. At the travel demand component of POLARIS is the activity-based demand
model, ADAPTS, where a route choice model is explicitly included so that connected vehicle
technology is possible to be evaluated. By setting scenarios of AV ownership, the value of travel time

change, and capacity change, the authors observed a board range of VMT increase from 1% to 79%.

Traffic delay is another well-used indicator to suggest the level of congestion in transport research.
In the context of AVs, however, this value seems less popular in use. Childress et al. (2015) found that
daily average delay hours could at most improve by 58.6% if SAVs are to dominate, but also could
deteriorate by 17.7% when all trips are made by PAVs. On the contrary, Vyas et al. (2019) suggested
that with the benefits of road capacity improvements, a reduction of delays is found in all their

scenarios, from 40.4% to 85.4% and 10.4% to 64.7% for freeways and other roads, respectively.

In all, the effect of congestion seems to vary with the model settings and remains rather unclear on
balance with positive and negative components. A more comprehensive analysis and in particular

better evaluation metrics are necessary to offer a better understanding.

2.3.4 Impacts of Automated vehicles on Accessibility and Land Use

This sub-section focuses on the induced impact of AVs in the longer term. This concerns land use
changes such as residential location choice and infrastructure development choice. Before stepping

into land use, one evaluator called accessibility is to be introduced and reviewed as its important
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role in connecting transport and land use implications.

2.3.4.1 Accessibility Change

Being different from classical mobility-based planning performance indicators such as automobile
travel speed and delay, utility-based accessibility (Geurs & van Wee, 2004) corresponds with
perceptions of the people in the study area and is typically considered a more composite indicator

for evaluation policies (Section 3.2.2).

AV’s impact on accessibility has long been discussed in the literature. For example, according to an
expert-based experiment (Milakis et al., 2018), some experts considered it likely that induced travel
demand might offset the accessibility benefits, while others took a positive position about overall

AV accessibility impacts.

Some studies have been conducted to quantify accessibility changes resulting from AV introduction,
which are nevertheless limited in quantity. Meyer et al. (2017) studied the impact of AVs on
accessibility in Swiss municipalities based on the Swiss National Transport Model. Three nationwide
scenarios that differ in AV deployment strategies (i.e., type of roads or areas AVs can operate), AV
ownership, and road capacity benefits were examined. Their findings suggest overall considerable
accessibility gains in all the scenarios while large cities suffer a small decrease in the fully shared
automated scenario. For example, an average 10% increase in accessibility was found in the scenario
with induced demand from new customer groups of the young and the old as well as an optimistic
capacity change setting of a 40% increase in urban roads and a 270% increase in extra-urban roads.
Itis noted that a simple network loading model was used in the study, where the level of congestion

by introducing AV might be limited.

Childress et al. (2015) measured accessibility changes in their most aggressive AV scenario through
the activity-based travel demand model. The Puget Sound Regional Council researchers found that

due to the convenience of AVs, logsum accessibility increased from 8.5% to 8.9% for the whole
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Seattle area, with considerable higher increases in more remote areas. Similar findings and
especially the pattern of changing differences between centers and outskirts can be found in Vyas
etal. (2019) and Luo et al. (2019), the former observed in the scenario with a 50% value of travel time
bonus at most about 0.5 aggregate accessibility increases, which the authors considered are not
extreme. The latter found a total 23-36% increase of trip-based logsum across the study region, with

no induced travel incorporated in this simulation study.

Nahmias-Biran et al. (2021) evaluated their SAV simulation work with activity-based accessibility, a
more advanced accessibility measure (Dong et al., 2006). The work was implemented with the
SimMobility simulator where a DAS-based activity-based travel model is included. Activity-based
accessibility was computed as the logsum of the upper-most level of their activity-based travel
demand model. As result, in a scenario where SAVs are exclusively operated in Singapore, overall

accessibility gain was observed as people with lower income enjoying more.

2.3.4.2 Land Use Change

AVs might have profound impacts on land use patterns on a regional scale. Given a decline in
generalized travel cost under the transport-land use feedback relationship, AVs could influence the
tradeoff between land values and commuting costs (e.g., Alonso, 1964). In weighing this tradeoff,
the willingness to reside or locate homes or firms farther away is assumed to be one of the impacts
in the longer term. Therefore, this could encourage a house and firm moving trend toward the
outskirt of a city and in consequence a lower-density land use pattern in the future. Given the focus

of this dissertation, a review of the impacts on residential location choice is to be highlighted.

Using survey methods is the first common stream of research in studying AV impacts on residential
location choice. According to an SP survey of 347 respondents in Austin, Texas, and an ordered
Probit model, Bansal et al. (2016) found that respondents with more children, living further from

their workplace in a high-density commercial area, and who prefer to drive alone for work trips tend
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to move further from the city center in Austin, Texas, the U.S. It is perhaps because of lower land
prices in suburban areas and more comfort in long commuting time. Also, the respondents with
bachelor’s degrees or higher and living in high-density neighborhoods as well tend to move further
from central Austin, perhaps on account of high land prices in their current neighborhoods. On the
contrary, the results indicated that full-time employed males with higherincome and annual vehicle
miles traveled are likely to move closer to the central area, perhaps to utilize the SAV service more
conveniently. Tech-savvy respondents showed a similar propensity to shift closer to the center. 74%
of the residents were reported to believe no home location change would be made, while 14% and

12% chose to move closer and farther from the city centers, respectively.

Krueger et al. (2019) investigated this issue by conducting an SP survey of 512 residents in Sydney,
Australia. In the survey, the respondents were required to jointly choose a residential location option
and a commuting travel mode option from HV, AV, and public transit. They summarized that, after
calibrating the data with a Mixed Logit model, the changes in the value of travel time of AVs and the

residential location choice preference may be limited.

Kim et al. (2020) also examined the choice of residential location and vehicle ownership bundle in
the context of AVs. A cross-nested logit model was estimated based on the results from an SP survey.
As result, they found 77.3% of the respondents expected no change in the residential location,
though one interesting propensity was revealed that the more people expect AVs to make their time
using more productively and flexibly, the more likely they are to move farther away from work and
other currently frequently-visited places. The authors remarked that it probably is “because long-
term decisions are relatively stable, the ramifications of AVs may still be difficult for many people to

imagine, and the nature of the AV era remains profoundly uncertain for everyone”.

Some other survey studies quantified the magnitude of the changes in residential locations. Moore
et al. (2020) predicted a 68% increase in commute time conditional on relocation based on their
Dallas-Fort Worth metropolitan area-based survey. They argued the result suggested the upper

range of potential urban sprawl.
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Much less evidence is currently available that was applied in travel forecasting modeling and/or

simulation paradigm. Four notable works are introduced below.

Gelauff et al. (2019) studied the effects of PAVs and automated public transit on residential location
change with a general equilibrium model LUCA, which was designed in a LUTI fashion to connect
transport effects with land use. The concept of equilibrium in their model refers to equilibrium in
the residential land market between housing supply and demand. Upon the change in the housing
demand resulting from transport choice, land prices are adjusted until the housing demand and
supply that was exogenously provided are equal again. In total, 3 models: a commuting mode
choice model, a job location choice model, and a residential location choice model were combined
within an NL paradigm in LUCA, whose parameters were sequentially estimated based on 60,000
Dutch employees. In their model that assumed a 20% reduction of the coefficient on the travel time
of privately owned cars for trips longer than 5km, home-job location distance was found to increase
by 16.8% across the Netherlands, and the population decreased by about 1% in the four largest

cities and 3% in other large cities.

Meng et al. (2019) employed a LUTI simulation platform SimMobility to study the SAV impacts on
moving patterns in Singapore. The study combined a long-term housing market model, a job
location choice model, and a household vehicle ownership model, where the effects from SAV were
reflected as logsums calculated from the transport models proposed in their previous studies.
Housing bidding behaviors were explicitly considered. Their results suggested a roughly slight
moving-out tendency from the central region under a scenario with SAV added to compete with the
existing transport modes. Nevertheless, under a scenario where only SAV and public transits were

allowed, 15.6% more people moving into the central region were found.

Zhang and Guhathakurta (2021), on the other hand, focused on residential location choice in
exclusively “the era of SAV” where the authors connected an MNL-based residential location model
and an agent-based SAV simulation model that was built in Zhang and Guhathakurta (2017). The

model for Atlanta, Georgia, the U.S. simulated SAV fleet size determination, SAV passenger
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assigning and serving, as well as SAV relocation and parking. The trips generated through a Four
Step model were used as the input. As result, they found average waiting time for SAV would be less
than five minutes in urban areas and longer than ten minutes in suburban areas. Two scenarios
where the in-vehicle travel time of SAV becomes 0% and 75% (where all trips are served by SAVs)
were assumed. Then, the change in travel cost was reflected in the residential location model, where
the costs were included as one of the independent variables. After the simulation, it is found in this
study that people all tend to move away from their job location but some may choose to move
closer to the CBD area, for example, people younger than forty without kids will relocate further
away from the CBD (6.8% increase in median distance) and their job locations (23.4% increase in
median distance), while older people with children tend to move closer to the CBD (6.5% decrease
in the median distance) but still away from their job location (20.9% decrease in the median

distance).

Llorca et al., (2022) studied the potential PAV effects on residential location choice in the context of
Munich, Germany. They proposed a combination of a land-use model system, a travel demand
model, and a traffic assignment model, as their LUTI methods. They assessed eight AV scenarios
covering the effects of changes in the value of travel time, parking restrictions, and traffic congestion.
The commuting time changes largely account for the AV impacts connecting the transport models
to the land use model. Their results observed urban sprawl. For example, for the full scenario where
all the AV effects were included, those who work and also live in the city centers would be 2-3%

fewer than in the non-AV scenario.

Apart from the potential change in residence distribution, the change in parking infrastructure
toward urban land use patterns is also considerable. Three ways to assess this impact are clarified:
first, during the time gap between dropping off its owner and the next request, these vehicles could
pilot themselves to a remote parking lot where the parking fee is cheaper. In this way, the amount
of parking infrastructure would be reduced in the urban center area (Fagnant & Kockelman, 2015);

second, parking capacity can be increased on existing lots since no room for driver access would be
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required anymore (Childress et al. 2015); third, SAVs would instead not need to park or reduce the
frequency to park since they are always busy serving passengers, i.e.,, operated with higher

utilization efficiency (Zhang et al. 2015). Detailed findings on this topic are not covered in this review.

In a summary, AV impacts in the long term have not received sufficient research attention so far.
This is reflected in not only the limitation in the quantity of academic research have been published,
but also in the opposite envisions proposed and contradicting findings that have been revealed
from the existing literature. Regarding residential location choice, despite the LUTI models having
been widely applied, appropriately reflecting the changes from AVs in the residential location model
is far from reaching a common ground. The results also varied widely depending on the contexts of
the study regions. Evaluating the AV impacts in a context that has been missing regarding this topic

should offer insights into this unsettled research question.

2.3.5 Literature of Automated vehicles in the Context of Japan

This dissertation considered itself as one of the contributions to the AV research in the context of
Japanese society, thus recognizing the necessity to introduce the existing literature within the

context in a separate manner.

To the best of the author’'s knowledge, studies about AV awareness and implications in the context

of Japan are limited in quantity thus far.

Most of the existing English-written research has concentrated on the public preferences towards
AV ownership and mode choice behaviors that should fall into what has been introduced in Sub-
section 2.3.3. For example, Jiang et al. (2019) conducted an SP survey on AV ownership by analyzing
576 car users in Japan. The authors set five types of attributes (AV penetration rates, additional AV
purchase cost, AV insurance discount rate, AV parking cost, and release timing of AVs to the market)
and found that more than half (53%) of their respondents chose to purchase an HV, while 26% to

own AV with Level 4 or higher. Further, a Mixed Logit model was employed to investigate the
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relationships between the WTP and the assumed AV attributes as well as individual demographic
attributes. One interesting finding is that senior respondents are more likely to own AVs compared

to younger respondents.

Hao et al. (2019) made similar efforts in measuring the intention and WTP on SAVs by the SP method.
An effective sample with 1,036 respondents from Nagoya City, Aichi, was collected. The respondents
were directly asked the amount of money they would like to pay for eleven assumed SAV “services”
(e.g., easy boarding, short waiting time, larger trunk, etc.). As result, six clusters of respondents are
identified: for example, the cluster with mainly middle-aged employed people and in general low
interest in SAV shows lower WTP (1.76 USD per SAV trip), which is around 46% less than the cluster
with the second lowest WTP (3.81 USD per SAV trip) and 62% less than the cluster with the highest

WTP (4.67 USD per SAV trip). Trip heterogeneity was unfortunately not considered in their survey.

Besides the ownership and mode choice, the general AV acceptability concerning some specific
facets of public awareness has also been investigated. Chikaraishi et al. (2020) conducted an SP
survey from Japan in examining the risk perception levels of AVs. The 1,442 respondents from
Hiroshima Prefecture were first presented with randomized combinations of videos about three
types of AV-related risks: system error, hacking, and unexpected events. After that, the respondents
were asked to self-report three types of information: first, their perceived benefits and risks
regarding 20 “risk items” including AVs, nuclear power, smoking, skiing, etc., in relative magnitude
to each other; second, their risk level acceptability regarding the risk items; third, perceived
characteristics regarding the nine risk items in Likert scale, for example, the extent of knowledge
about that specific risk by the public. The results of the perceived risks of AVs were found lower than
HVs but higher than railways at large, despite the difference in the perceived risks between partial
automation and complete automation being found not significant. While for the risk characteristics,
the results reveal that the nine risk items after conducting a factor analysis can be well explained by
two aggregate factors: dread and unfamiliarity. The AVs are found within the highest unfamiliarity

score but are neutral on the dread scale. The current risk perception of AVs has thus been confirmed

77



to be mainly a result of their strangeness and lack of public exposure, which could explain those

intuitively incorrect SP model results in the context of AV generally.

Abe et al. (2020) also investigated the link between safety concerns and AV user acceptance. This
group of researchers focused on the impacts of the approach to SAV monitoring which is argued by
the authors could affect individuals’ perception of emergency management and thus the general
safety of SAV. Similarly, SP methods were used from a web-based survey with 1,663 respondents
across Japan. Direct questioning about the intention to use automated buses and taxis was first
conducted, where six alternatives involving the two modes and three monitoring methods: on-
board human monitoring, remote human-based monitoring, and remote system-based monitoring
are included. The results show that “more individuals express strong resistance to more advanced
remote monitoring”. Following that, a stated choice experiment was structured to obtain the mode
choice responses to each respondent’s last trip, where their actual mode and SAV are provided as
the choice alternatives. Estimation results from Panel Mixed Ordered Logit models were used to
reveal the relationship between the individual demographics, trip characteristics, monitoring
methods, and SP responses. The authors reported no significant effect on intentions to use SAV and

the monitoring method variables.

Few English-written existing literature is found discussing other facets of AV in the context of Japan,
with Abe (2019) and Luo et al. (2019) being notable exceptions. Abe (2019) analyzed the Japanese
context with the method used by Bosch et al. (2018) and found that PAV could cost at least 60 JPY
per km (0.85 USD per mile) for the central area and 40 JPY per km (0.57 USD per mile) for the
peripheral area; SAV at least about 60 JPY per km (0.85 USD per mile); and SAE at least about 40 JPY
per km (0.57 USD per mile). He concluded similarly to Bésch et al. (2018) in comparing conventional
vehicles to their automated counterparts. Luo et al. (2019) applied MATSim and scenario analysis for
the Gunma Prefecture with both PAV and SAV considered. The research took the advantage of the
agent-based traffic simulation function from MATSim and Gunma Person Trip data and hence

managed to simulate AVs in a much finer spatial resolution in the context of Japan. The simulation
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results suggest that, for example, 24.7% share of PAV and 8.2% share of SAV were gained in a
scenario with a 30% population possessing PAV; SAV fleet size supplied equal to 5% total
population; 25% value of travel time for AVs compared to HVs; and 32 JPY charge for SAV per km.
This work also highlighted itself in providing accessibility as one of the evaluators, where on average

31.8% accessibility increase was found in the study area.

Greater diversity is found in Japanese-written existing literature. Early studies such as Kii et al. (2017)
have made attempts to evaluate full-automated PAV implications via economic models, which are
however limited in assuming too many exogenous inputs and assumptions including deciding trip

distance by the assumed city size, fixed and identical number of trips, etc.

Katsuki et al. (2017) analyzed the possibility of SAR introduction for the southern part of Ibaraki
Prefecture by matching the trips in the Person Trip (PT) data of the corresponding area within the
county level (“small zone”). The difference between the HVs and AVs is limited in concerning the
vehicle ownership only: in the HV-ridesharing scenario, a ridesharing trip would be generated only
between an HV owner and a non-owner, which is not demanded in AV-related scenarios. The
number of supply vehicles is obtained by assuming all the SAR trips are satisfied. The results show
more than around 10% trip reduction per vehicle in their AV-related scenarios. Besides, spatial
heterogeneity in SAR trip matching offers some valuable insights: for example, industrial areas
would have the highest ridesharing share, which is arguably to be explained by more temporally
concentrated travel patterns in the area. With the same methodology but different evaluators, the
subsequent works of Katsuki et al. (2018a) and Katsuki et al. (2018b) examined the implications of

SAR on parking time and emissions, respectively.

Kamijo et al. (2019) followed Luo et al. (2019) in applying the simulation framework of MATSim to
evaluate the AV implications. This research highlighted itself in practicing the ride-sharing module
in MATSim as SAR and adapting it with some sophisticated vehicle allocation settings to Numata
City, Gunma Prefecture. PAV and SAV were also added as the mode choice alternatives along with

SAR. One of the major results of this research is that different vehicle allocation algorithms would
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influence the SAR running efficiency to a great extent.

Furusawa et al. (2020) conducted a simulation-based analysis of automated car-sharing in the
context of Japan. The authors first conducted an SP survey for around 390 households residing in
the 3km circle from the city center of Kumamoto City, Kumamoto Prefecture. The survey was
designed with three objectives: whether the respondent would like to replace one trip of their
reported itinerary from the current mode to AV car-sharing; whether the respondent would like to
own an AV; and if so, whether the respondent would like to lend it to others. The first question was
estimated with a binary Logit model, while the last two were with a Nested Logit model. Then, a
rule-based model was built to simulate the potential AV car-sharing demand from the Kumamoto
Person Trip data. As result, 720 people (out of 196,322 individuals in Person Trip data) were identified
as AV car-sharing service providers, whose vehicles are almost used all the time with a 99.8% utilizing

ratio out of 100-day simulations.

Matsunaka et al. (2020) built a simulation model based on a virtual mono-center city targeting the
implications of SAV. The trips in the virtual city were generated from the summary statistics from the
National Person Trip data, where the OD pairs along with facility locations were determined by a
model from a previous work of the authors. The study assumes that all the HV trips generated from
the last step are replaced by SAV trips, whose fleet number is decided in a similar way to Fagnant
and Kockelman (2014). The main evaluation statistic of the study is a social cost, which is calculated
from vehicle running cost (gasoline cost, travel time cost, waiting cost), vehicle maintenance cost,
and parking space maintenance cost. The simulation results suggest that by introducing SAVs, the
total social cost would reduce by 25 million JPY per day, around 88.7% of the HV case. The

improvement is mainly attributed to the reduction in maintenance costs and vehicle running costs.

23.6 Summary

The advent of automated vehicles is still looming on the horizon, making the image of the future
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remains in question.

Extensive research attention has been devoted and is still being devoted to studying the possible
characteristics and potential implications of this novel mode of transport. One may expect the
predictions of the former to be straightforward given field experiments are currently being
implemented vastly. That is, however, not the case according to the review given in this chapter: the
costs of AVs are subject to the specific technology equipped and the actual commercial model
adopted; benefits in value of travel time seemingly have become controversial in some recent
studies. The latter that resulted from the change in the AV characteristics hence is observed with
even wider discrepancy: many respondents of the SP survey were observed to declare no change in
vehicle ownership and residential location choice would be made, while the simulation modeling

works suggested this would probably not to be the case.

The issues are found even unclear in the context of Japan. The existing AV-related literature for
Japan is limited in quantity and scope: though many have looked into the public awareness of AVs
using SP survey data from Japanese people, few works have paid attention to other aspects such as

destination choice, travel generation choice, and long-term implications.

We here borrow the categorization from Harb et al. (2021) to categorize the potential AV impacts: 1)
the impacts whose direction is consistent across the existing literature of adequate quantity, despite
the magnitude varies; 2) the impacts with limited evidence but consistent results, albeit the range
varies; 3) the impacts with limited evidence where findings are also conflicting; and 4) the impacts

with very few studies ever address.

Table 2-2 summarized the reviewed impacts with consideration of the author and the results from

Harb et al. (2021).
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Table 2-2. Categorization of AV Impacts from the Existing Literature.

Category AV impacts Category AV impacts
Safety. Value of travel time and in-vehicle
Costs. behavior.
: Road capacity. ) Destination choice.
Traffic flow characteristics. Travel generation choice.
Mode choice preference and willingness to Accessibility changes.
pay. Parking supply changes.
3 Residential location choice. 4 Job location choice.
Operating models preference: SAV and PAV. Idle vehicle using pattern;
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CHAPTER 3 METHODOLOGY AND DATA

Following the literature reviewed in the last chapter, this chapter is intended to clarify the specific
methodology framework that is going to be used in this dissertation in a general way as well as to
provide some reasonings for choosing such a framework. Further clarifications and specifications of
the methodologies are to be covered in Chapters 4, 5, and 7. Two sections introducing the study

region and data are also provided in this Chapter.

3.1 Methodology Framework

This study should fall into the general category of travel forecasting, as the objective is to forecast
AV impacts in the future. The implications to be concerned involve different periods, so a multi-

hierarchical model system is adopted as the methodology framework of this dissertation (Figure 3-

1).

This model system mainly consists of three models: an activity-based travel demand model, DAS
(Bowman and Ben-Akiva, 2001; Bradley et al. 2010); an agent-based dynamic traffic simulation
model, MATSim (Horni et al., 2016); and an MNL-based residential location model. As Figure 3-1
shows, the DAS models the travel demand and MATSim models the travel supply part. These two
models are integrated in a manner that is similar to Lin et al. (2008) to capture the travel demand-
supply interactions: the outputs from both models, respectively time-specific OD pairs data and
network conditions data, are exchanged across the two models. The procedure of exercising travel
demand-supply equilibrium is necessary in, for example, measuring indirect effects such as
increased travel time due to the induced travel from the introduction of AVs. After the two models
converge to a demand-supply equilibrium, a concept of activity-based accessibility (Dong et al.,
2006) is calculated as a composite change from the transportation system to be passed to the long-
term residential location choice as one of its inputs. The approach to incorporate the activity-based
accessibility used in this research references mostly Ben-Akiva and Bowman (1998b). The use of

accessibility in residential location choice models is a common practice. For example, in the DRAM
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model (Putman, 1983; 1991) a similar concept was included as a measure of the aggregate benefit

households could receive from locating at a specific residential zone.

Automated Vehicle features New mode alternative

1.  Less travel impedance.
2. Improved availability in mode choice.
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Figure 3-1. Overall Methodology Framework.

Three texts in the grey background: infrastructure, job location, and facility development are the

factors considered exogenous, i.e., either unchanged or set by scenarios.

AVs are incorporated in this model system as a new travel mode alternative with two key
assumptions: 1) to have less travel impedance, and 2) improved availability in mode choice, that is,
becoming available for those unable to drive and used by another household member when inidle.
The choices on the travel demand side then reflect adaptions to this new mode alternative in the
adopted activity-based demand model, following which the changes are passed back to the supply
model to form the iteration. Specific treatments following this change are also to be elaborated in

the following chapters (e.g., Section 6.1).
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The frequently mentioned method of Logit model is briefly introduced here. The family of Logit
models is conceptualized in Probabilistic Discrete Choice Theory with Random Utility Maximization
approach (e.g., Manski, 1977). This approach adopts a perspective that the choice probability of
alternative ifrom the choice set C,, of individual n equals to the probability of i's utility U;,, is no less

than all other alternatives in C,,(Ben-Akiva & Lerman, 1985):
P(i|Cy) = Pr[Ui, = an,Vj € Gyl

The utilities U;, for all i in C, are all considered random because mainly the observational
deficiencies of the modelers in obtaining the “true” form of utilities. Manski (1977) identified four
sources of randomness: unobserved attributes; unobserved taste variations; measurement errors;
and instrumental variables. Therefore, the random utility is expressed as the sum of an observable
component, V;,, (often called systematic component), and an unobservable component, ¢;,, (often

called disturbance):
Upn =Vin + €in

Then, by assuming that all the disturbances ¢;,, are independently and identically distributed type |
extreme value (i.e.,, Gumbel distribution) with a scale parameter u, we can derive a choice model

paradigm with a form of:

Vin

P()= c———
" ZjECn eVin

This model is called Multinomial Logit (MNL) model, where conventionally V;;, are structured linearly

with the following types of terms for individual i and alternative j(Croissant, 2020):

1. Alternative specific constants q; (to capture the average effect not included in the model).
2. Alternative specific variable t; with generic coefficient 6.

3. Individual or choice-situation specific variable z with alternative specific coefficient y,

4. Alternative and individual or choice-situation specific variable x; with generic coefficient .
5. Alternative and individual or choice-situation specific variable w; with alternative specific
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coefficient 6;.
As only the difference of utility matters in the structure of Logit models, we can thus obtain the

utility difference for alternative jand k as:

Vj - Vk = (Cl] - ak) + Q(t] - tk) + ()/] - ]/k)Zl' + ﬁ(xl-j - xl-k) + (6]WU - 6le'k)

Note that within the formula above, at most J-1 alternative specific coefficients can be recognized
with Jalternatives in total. Hence in the estimation, a base alternative would be arbitrarily selected

which is usually the most selected one from observations for the convenience of demonstration.

Despite that MNL is subjected to limitations such as a property of Independence from Irrelevant
Alternative, the application of MNL has been widespread since its introduction due to its great

tractability.

3.2  Reasoning behind the Methodology

As reviewed in the previous chapter, the combination of activity-based travel demand model and
dynamic traffic assignment model is considered the state-of-the-art paradigm in travel forecasting.
Hence, advanced model reliability and sensitivity are expected compared to its traditional
counterparts at large. How these advantages can be gained in specific in the DAS and MATSIim
combination is first summarized below. Then, the superiority of activity-based accessibility over

traditional accessibility measures follows.

3.2.1 Advantages of MATSim and DAS model

The major advantage and the reason to use MATSim in this research is its spatial and temporal
resolution which are one of the finest levels currently available. This model was built on basis of the
knowledge and experience from the TRANSIMS project (Smith et al., 1995), one major contributor

of which, Kai Nagel, later become one of the initiators of MATSim.
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The launch of the TRANSIMS was one of the initiatives to develop a new forecasting method
stimulated by the ISTEA legislation in 1991 by the U.S. government, paralleling the innovations of
activity-based travel demand models. The ambition of the TRANSIMS project was to contain
modules of a population synthesizer, an activity demand generator, and an intermodal route
planner, together in an iterative microsimulation approach. Nevertheless, the probably most
significant feature of TRANSIMS was the unprecedented resolution and scale at the time in its
proposed methods: second-by-second microsimulation over 24 hours within an “all-streets”

network in the scale of entire cities (Boyce & Williams, 2015).

The methodology framework and the features of TRANSIMS have been succeeded by MATSim to a
large extent but also with some advances: for example, MATSim replaced cellular automata model

with a queueing model for the network loading part.

Briefly, the improved network representations are considered necessary to match the precision of
travel behaviors generated by advanced activity-based demand models. Besides, from a practical
perspective, the reputation of MATSim in being employed in the existing literature studying AV
behaviors, as well as its open-source nature that offers good access, have also contributed to the

decision of adopting it as one of the methods in this dissertation.

The use of the DAS model also requires words of reasoning here. Despite that MATSim, as reviewed,
is originally designed as an integrated transport demand and supply model, this research purposely
choose to not enjoy MATSIim'’s full function. The main reason for that is the travel demand module,
i.e., the so-called Operators that are applied in MATSim could not provide sufficient model sensitivity
that is required in examining AV impacts: namely the induced travels of AVs in both sense of travel
more and travel longer, which mean the demand for accommodating trip generation and trip
destination choices. This research expects that the induced travels would influence the congestion
effect and accessibility, thus being an important factor in evaluating the AV implications. According
to the literature review, it is found that the induced travel has been so far relatively focused on those

caused by empty trips of SAVs. In this regard, a separate activity-based demand model is adopted
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to generate daily demand including the “trip generation” and “trip destination” steps.

The reason why the activity-based travel demand model is chosen over other conventional travel
demand models (i.e., the Four Step Model, the Integrated Trip-based Models, and the Tour-based
Models; see Section 2.1) can be summarized simply in that, especially for the DAS type, it allows
“consistent generation of all tours and trips made during a person-day” (Vovsha et al., 2005).
Compared to the Four Step model, the trip generation in activity-based models (so do the Integrated
Trip-based Models and Tour-based Models) is sensitive to the change in travel impedance so that
being responsive to the induced travel. While compared to the other trip-based and tour-based
models, activity-based models provide a new modeling dimension: the daily pattern level, so that it
could not only give a greater level of output detail but also accommodate the interactions between

the tours made during one entire day.

To this end, we choose the DAS model, one representative of the utility-maximizing models, among
all the activity-based models that have been proposed and applied. The reasons why the rule-based
activity-based models were not adopted are that most of the rule-based models focus on activity
scheduling and sequencing while considering activity generating to be exogenous (Pinjari & Bhat,

2011).

To choose the DAS model, among other activity-based models, is at first because of a practical
reason that DAS type models are one of the most applied travel demand models in the real world.
This is presumably due to its utility-maximizing protocol and hierarchical model structure being
easier to understand and validate so that they get more chances to be appreciated by the

practitioners and policymakers.

The DAS model is also considered by the author to be one of the most maturely developed activity-
based model systems nowadays. DAS model was structured based on trip- and tour-based discrete
choice models (e.g., Ruiter & Ben-Akiva, 1978), where interactions among the travel decisions were

captured via expected utilities. These model systems have been extensively applied, validated, and
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extended, suggesting their “ability to perform reasonably well in forecasting” (Bowman, 1998). As
an extension, the DAS model managed to accommodate trips and tours into one larger level of so-
called “day pattern” (through some innovative designs to reduce the number of its original
formidably large alternative set), so that allows more policy sensitivity to the pattern-level choices.
Despite comprehending to this more complex choice hierarchy could introduce difficulty and even
new sources of bias in forecasting, it is thus chosen by the author as a balance between the model

sophistication and model sensitivity.

3.2.2 Accessibility as an Evaluation Measure

The use of accessibility has been widespread in transportation planning, urban planning, and other

academic fields for decades, for assessing composite benefits from the transport system.

The definition of accessibility varies to its application context, but in its essence refers to “the
potential of opportunities for interaction” (Hansen, 1959) at large. Another definition of “the extent
to which land-use and transport systems enable individuals to reach activities or destinations by
means of transport modes” (Geurs & van Wee, 2004) might offer impressions in a slightly more
specific fashion. By using the word “opportunities”, it means that having accessibility does not
require any actual use of the services and activities, but the potential is valued (Nahmias-Biran &

Shiftan, 2016).

The existing literature seemed not unanimous in the way of measuring accessibility. Geurs and van
Wee (2004) provided a review and classification of the accessibility measures: infrastructure-based
measure for analyzing the level of service of transport infrastructure, such as level of congestion and
average travel speed; location-based measure for analyzing the level of access to locations typically
on a macro-level, such as the number of jobs could be reached within 30 minutes traveling from the
origin; person-based measure for analyzing accessibility on an individual level, such as the activities

an individual can participate at a given time; and utility-based measure for analyzing the economic
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benefits that people can gain from the activities.

The utility-based measure, in specific, the logsum is adopted in this dissertation. This measure offers
an interpretation of accessibility as the “expected utility associated with a choice situation” (Ben-
Akiva & Lerman, 1985) which is similar to an economic concept of indirect utility. Within the RUM
framework, the expected utility refers to the systematic component of the maximum utility. In MNL,

it equals the natural logarithm of the denominator:

1
A, =—In Z etVin | +C
u 4
ieCp

Where 4,, denotes the accessibility of individual n, u the scale parameter, i the alternative in the

choice set C,,, V;,, the systematic component of the utility of i for n,and Can unknown constant that

represents the absolute value of utility in that MNL specification.

Although the logsum measure suffers from shortcomings such as failing to capture temporal
constraints, i.e., the available time of facilities and time budget of individuals, it satisfies most of the
theoretical criteria proposed by Geurs and van Wee (2004), including being sensitive to changes in
both transport and land use system, taking individual’s heterogeneity into account, and being
relatively easy to operate and interpret. Of even more significance is that the logsum is, by its
foundation, linked to microeconomic theory so makes itself appropriate for economic evaluations.
An indicator of social welfare, consumer surplus can be easily transformed from logsum by dividing
it by a travel cost coefficient (Geurs & van Wee, 2004; de Jong et al., 2007). As argued and suggested
by de Jong et al. (2007), the logsum measure of consumer surplus is more accurate than the
traditional Rule-of-a-half practice, which is based on assuming incorrect linear demand curves and

cannot correspond to the situation where there is a change occurred in the number of alternatives.

There is one technical issue required for the application of the logsum measure that the logsum
must be normalized before any comparisons across individuals are to be made (Ben-Akiva & Lerman,

1985; Dong et al.,, 2006). To achieve this, Level Condition and Scale Condition must be satisfied in
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any utility-based measure (Dong et al., 2006), the former asks logsum to have a consistent
benchmark utility, i.e., to drop that unknown constant that could vary with heterogeneity across
individuals; the latter requires logsum to share the same unit/scale. Level Condition can be satisfied
by computing the differences of the same model specifications with different inputs value. Scale
Condition can be satisfied by converting the utility units to a comparable model variable, e.g., travel

time or cost.

The applications of logsum measure in practical appraisals of transport project was limited until
2000 (de Jong et al., 2007), and the applications involved mode-destination choice mainly (e.g.,
Niemeier, 1997). As an extension to that, Dong et al. (2006) formulated a concept called “Activity-
based Accessibility” (ABA) that was first presented by Ben-Akiva and Bowman (1998b). The key
difference between the ABA and mode-destination accessibility is that the former is generated from

the DAS model, so it examines all trips and activities in the whole-day range instead of a single trip.

In specific, ABA still follows the formula of logsum above, where the choice set is a set of activity
schedules rather than a single trip’s mode-destinations for specific trip purposes. This allows ABA to
reflect the influence of trip chaining and scheduling and thus to provide evaluations with higher
sensitivity. For example, Dong et al. (2006) compared the ABA with mode-destination logsum
accessibility on a work trip when imposed with a peak-hour toll. They found that on average the
magnitude of decrease in logsum is lower in ABA than the traditional trip-based logsum, the authors
argued that it is because the ABA is able to reflect “the full array of adjustments” in not only the
peak-hour commuting work trip other than mode-destination choice dimension but also in other

trips, whatever their trip purpose, in the individual’s daily schedule.

3.3  Study Region

This article uses Gunma Prefecture of Japan as the study region to examine potential AV implications

in the context of regional areas in Japan. Gunma is a landlocked prefecture that belongs to the Kanto
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region, with its prefectural government located approximately 100km away from Tokyo Station
(Figure 3-2). It covers 6,363 km? and has a total population of 1,940,333 as of 2020 (Statistics Bureau
of Japan, 2020), with a population density of 304.9 people per km?. This value is slightly less than the

average population density in Japan of 338.4 people per km? (Statistics Bureau of Japan, 2020).

Figure 3-2. Location of Gunma Prefecture. Source: OpenStreetMap.

Gunma prefecture consists of thirty-five municipalities that vary a lot in characteristics. The
prefectural capital Maebashi and the most populous city Takasaki together hold a 36.4% share of
the whole population, the value would increase to 64.3% when considering other major cities,
namely Ota, Isesaki, and Kiryu (all are shown in Figure 3-2). The urbanization pattern in Gunma is
skewed to its southeast, which is close to the Tokyo Metropolitan Area. Its rural area is covered
largely by mountains and forests, with around 14% of the total land of Gunma designated as the

National Parks of Japan.

It is accurate to describe Gunma as a car-dependent society. Gunma is the prefecture with the
highest average private four-wheeled vehicle ownership in Japan with 70.5 vehicles per 100 persons
(AIRIA, 2021). According to a summary report of Gunma Person Trip Data (Inahara et al., 2017),

private cars accounted for 77.9% of the modal share in the area, while train, bus, bicycle, walk and
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others, took 2.5%, 0.3%, 8.6%, and 10.7%, respectively.

34 Data Sources

Multiple data sources are employed in this research, their basic information is introduced here.
3.4.1 Land Use Data

The analysis spatial resolution of this study is 1Tkm? mesh cell, which is called Tertiary Mesh (3 &k * »
> =) cell in Japan. Such a level is considered by the author appropriate as a balance between the

requirement of spatial resolution and computational cost.

Land use data for each mesh cell are obtained from mainly mesh cell level analysis (Statistics Bureau

of Japan, 2019) for Japanese National Census 2015 (E %4 #) and Economy Census 2016 (#i% & » ¥
= — G B & ). Basic data processing treatments are implemented to the mesh cell level data,

including removing those whose size of mesh cell is less than 0.3 km? (caused by prefectural border
trimming); removing those whose number of households is less than 5 (as 15 percent quantile);
removing those whose number of employees is less than 3 (as 5 percent quantile); and removing
those whose centroid is outside Gunma; These were done with “sf” package (Pebesma, 2018) from
the programming language of R (R Core Team, 2021). After the processing, two mesh cell level data
are obtained, namely Resident’s Mesh Dataset and Activity System Mesh Dataset, the former
contains all mesh cells having at least one household residing there while the latter contains all
mesh cells having at least one employee working there. By the definitions, most of the mesh cells
can be found in both datasets while some only appear in either. The two sets will serve different
purposes in the subsequent analyses. For example, the choice set of residential location choice
should be sampled from Resident’s Mesh Dataset, but the choice set of destination choice should
be sampled from Activity System Mesh Dataset. A summary of the attributes collected is shown in

Table 3-1 below.

93



Table 3-1. Summary of Land Use Mesh Data Sets.

. . . Standard

Dataset Variables Type Mean Median Min Max .
Deviation

Resident’s  Mesh #Residents Continuous 757.7 273 6 7246 1094.6
Dataset
Resident’s  Mesh ., seholds Continuous  297.9 96 5 3606 466.6
Dataset
Activity System .
Mesh Dataset #Employee Continuous 368.8 98 3 14237 766.1
Activity System #0Office Continuous  37.3 13 1 1225 71.5

Mesh Dataset

City (by the location of
mesh’s centroid)

Note: #Mesh cells in Resident’s Mesh Dataset = 2794; #Mesh cells in Activity System Mesh Dataset =2611.

Both Categorical - - - - -

The spatial distribution of the number of households in Resident’s Mesh Dataset and the number of
employments in Activity System Mesh Dataset are shown in Figures 3-3 and 3-4 as examples.

Two other important concepts of land use: Urban Function Attraction Area (UFAA, “#i iBRERSE X
1%") and Dwelling Attraction Area (DAA, “fa{i:i5E X1K") that will be frequently used in evaluations
are introduced here. These concepts are extracted from Location Optimization Plan (MLIT, 2021, “3z

HE E{LEHE") as the target areas to attract respectively urban functional facilities and residents to

achieve compact city designs. They are used to define the urban center areas for urban functional
facilities (e.g., commercial, educational, and medical facilities) and dwelling facilities, respectively.

The spatial distribution by Tkm mesh cell of UFAA and DAA are shown' in Figures 3-5 and 3-6.

1 UFAA and DAA are designated by the municipal-level governments, but some of them have not disclosed their area
designation as of Nov. 2021. These include Shibukawa, Numata, Midori, Annaka, Shinto, Ueno, Kanna, Shimonita, Nanmoku,
Kanra, Nakanojo, Higashiazuma, Naganohara, Tsumagoi, Kusatsu, Takayama, Katashina, Kawaba, Showa, Minakami,
Tamamura, Itakura, Oizumi, and Ashikaga from Tochigi Prefecture. This should be one limitation of the evaluation.
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Figure 3-3. Spatial Distribution of Number of Employees by Mesh Cells in Gunma PT Area.
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Figure 3-4. Spatial Distribution of Number of Households by Mesh Cell in Gunma PT Area.
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Figure 3-6. Distribution of Urban Function Attraction Areas (UFAA) in Gunma PT Area.
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Other sources of data are also employed in this dissertation but are limited to the scope of the
residential location choice. These include information on housing stock and land development

regulation type, details are to be presented in Chapter 7.

3.4.2 Initial Travel Demand and Residential Locations

Gunma 2015 Person Trip Survey data (Gunma PT data) is used as the initial travel demand and
residential location input. The prefectural government-hosted survey was conducted by
distributing questionnaires to randomly sampled around 242,000 households in Gunma prefecture
plus Ashikaga City in Tochigi prefecture (Figure 3-2) across 2015 and 2016. The questionnaires first
collected demographic and socioeconomic information, then asked each household to record their
information on trips across one day, including trip purpose, coordinates of origins and destinations,
mode of travel, departure times, etc. Note that this survey was not intentionally designed to collect
information at the tour level, and some valuable information was not collected such as individual
income, financial and time budget, which either will be a handicap to further analysis or will

introduce extra data processing in, for example, tour forming.

The PT Data was pre-processed with filters applied at the household level, which means if any data
was found missing or inexplicable for one individual, the individual along with all his or her
household members would be removed. This somewhat greedy way of filtering was applied to
ensure the integrity of each household, which is the analyzing level of the residential location choice
(Chapter 7). One exception is that all individuals with ages less than or equal to six are removed as
they are considered to be not able to independently make choices that are related to either travel
or residential location, with their other household members kept (if data quality of those people
would suffice). To be noted, the processing work was done using the programing language of R (R
Core Team, 2021) with the package of “data.table” (Dowle & Srinivasan, 2021) and “stringi”

(Gagolewski, 2021), among others.

A summary of the pre-processing procedures is given in Table 3-2.
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Table 3-2. Summary to the Pre-Processing Procedures Regarding to PT Data.

Filtered
Filter types  Related variables #household by
each step.
(origin# = 62,398)
Driving license or car availability 1,834
Household car ownership 9,167
Home location 3
Job type 2,173
Missing Type of employment 1,317
values Trip departure time 12,867
Mode of Travel 1,018
Trip duration 1,030
Destination coordinates 9,559
Driving state 312
Origin equal to Destination 284
Origin or Destination not in Activity System Mesh Dataset 102
Home not in Resident’s Mesh Dataset 35

Education-purpose Trip went to mesh cell with No Educational Facility

(attribute from Activity System Mesh Dataset) 668

Trips with Purposes of Shopping, Leisure, etc., went to mesh cell with

Inexplicable No Facility in Tertiary Sector (Attribute from Activity System Mesh 9
Dataset)
“Go back home” activities only 164
“Go back home” activities but not heading home 28
First trip of the day does not start from home 446
Last trip of the day does not back home 234

Unemployed or student did work-purpose trip, or non-student did

. . 440
education-purpose trip
Assumptions Used inapplicable modes of travel: train, bus, motorbike, and others. 1,196
made by the People wh i f tivities all d 1,295
eople who require accompany for activities all da ,
author ple w qui pany iviti y
People who drove car or bicycle not in a round-trip way, i.e., not 534
consistently through one tour (done after the tour forming procedure).
Extreme Bicycle or walking trip exceed mode-specific 99 percent quantile of trip 76
value distance, respectively

Note: some records may meet multiple filters, so the filtered number is subject to the filtering order (the applied
filtering order is exactly the order of variables shown here).

The four filters listed above should be considered as the assumptions of this research. These are
applied mostly for computational convenience: for example, removing those who take public
transits saved the efforts to retrieve travel impedance data for public transits, which could be

laborious given the Tkm mesh cell spatial level has been adopted.

Besides the filtering procedures described, another important filter has also been implemented.
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Since a majority of PT original data was removed, mostly due to the missing or inexplicable travel-
related data, there is a concern about over-sampling no trip data, i.e., respondents who reported
that no trip was made at all on the surveying day. Therefore, no-trip data was randomly removed

until the ratio of the person with no trip was equal to the corresponding ratio in the original data.

Finally, a data set of 16,425 households with 33,300 persons are adopted as the effective initial travel
demand and residential location data in this research. Approximately, the sample size is 1.57% of
the whole target population in 2015 (Statistics Bureau of Japan, 2015). A descriptive summary of the

effective PT data sample with major variables is given in Table 3-3.

Table 3-3. Summary to the Demographic Attributes in the Effective PT Data Sample.

Descriptive summary

Level Variables Data Type
Mean Median  Min. Max. Stan'da.rd
Deviation
Has <20  Binary True: 16.0%; False: 84.0%
household
member . ) %: False: 0
whose age is >65 Binary True: 33.5%; False: 66.5%
'(-ITOlt‘thOId #Household member Continuous  2.41 2 1 9 1.20
ota
#households = Bike ownership Continuous  0.55 0 0 10 0.86
16,425) Car ownership Continuous  1.80 2 0 12 0.88
Home location Coordinates -
Work.or School Coordinates -
Location
Holds license or not Binary True: 84.4%; False: 15.6%
Car availability by Cateqorical Always available: 78.5%; Shared with other household
individual 9 members: 4.8%; Not available: 16.7%
Age Continuous  49.00 50 7 100 19.95
Individual Gender Binary Female: 51.3%; Male: 48.7%

(Total Tertiary sector: 38.9%; Secondary sector: 17.4%; Primary
#individuals = jo type Categorical ~ sector: 1.8%; Student: 10.1%; Other: 0.6%; Homemaker:
33,300) 12.8%; Unemployed (excluding students): 18.4%

Full time worker: 59.8%; Temporary worker: 2.1%; Part-time
Categorical ~ worker: 21.5%; Board members: 3.9%; Self-employed
worker: 7.3%; Family worker: 3.2%; Others: 2.2%

#Trips in the day Continuous  1.02 1 0 13 0.84

Notes: Temporary worker refers to paid employee who are hired through dispatched labor; Family worker refers
to employee who are hired in a family business either paid or unpaid.

Type of employment
(among employees)
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3.4.3 Road Network

Network data is extracted from the OpenStreetMap (OpenStreetMap contributors, 2021) through
Java OpenStreetMap Editor. The study area bounding box covers totally 13,680km? where the whole
Gunma Prefecture and Ashikaga City are completely included. Pruning effort is not executed, that
is, the road network is adopted as the “all-street” way, except the toll roads as it is difficult to
calculate the fare and most of the trips using them are presumably associated with extra-prefecture
travels. Plus, road capacity for all the roads was scaled down by a factor to match the sample and

population ratio.
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CHAPTER 4 TRAVEL SUPPLY MODEL SPECIFICATION

This chapter focuses on the supply component in travel equilibrium, regarding which some general

introductions, specific ways of applying, and validations to prove the reliability are presented.

4.1 Introduction to MATSIim

In this dissertation, an agent-based travel simulation model, MATSim (Multi-Agent Transport

Simulation. Horni et al., 2016) is employed as the travel supply model.

As what has been discussed in Chapter 3, MATSim was designed as an integrated simulation toolkit
to model travel equilibrium, which requires MATSIim to be able to model both transport demand
and supply part. To this end, MATSim adopts a co-evolutionary iterative loop to converge to the

equilibrium (Figure 4-1).

o mobsim .
initial demand ]——)[ (network loading) }—»{ scoring }‘% analyses ‘
—| replanning }(—

Figure 4-1. MATSim Iterative Loop (Horni et al., 2016).

The loop starts with an initial travel demand in the form of daily activity and trip chains for every
individual. The activity and trip chains are loaded to the road network in the Mobsim phase. After
the end of one simulation day, a score is calculated for each agent'’s activity chains (i.e., plans). In the
final step of replanning, every agent possesses a collection of plans generated from their previous

plans and must choose one based on their scores to execute in the next iteration.

In the network loading part, a traffic flow model QSim is adopted in MATSim. The QSim applies a
computationally efficient queue-based approach (Figure 4-2). Basically, when vehicles enter a road
segment, they follow the behaviors described below: first, go through the link with time of the link
length and velocity ratio; second, the vehicle is inserted into the tail of the queue of the road; and
finally leaves the road according to flow capacity attribute of the road.
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Figure 4-2. Microscopic Traffic Flow Operational Mechanism in MATSim (adapted from Horni et al., 2016).

In the scoring and replanning part, a score is formulated in a generalized utility fashion, to offer a
criterion for differentiating a “better” and a “worse” plan for each agent. Based on the score, the
replanning part applies Genetic Algorithm (or called Evolutionary Algorithm) that “breeds” a new
plan completely based on previous plans, i.e.,, plans it has conducted by the specific agent. Two
operators, mutation and selection operator are generally used in the application. Mutation operator
modifies a certain component in the previously executed plan and adopted this modified (i.e.,

mutated) plan for the next iteration.

In its default configurations, three types of mutators that correspond to three components: route
choice, departure time choice, and mode choice are applied in MATSim. Reroute Mutator re-
computes the fastest path for each trip in the specific agent’s plan according to time-specific link
travel times, which are calculated from the simulation of the previous iteration. Time Allocation
Mutator randomly draws a value from a uniform distribution from minus 30min to plus 30min, then
shifts the activity end time for the first activity and activity duration for the other activities with this

value. Mode Choice Mutator changes travel mode to a random mode in the agent’s ownership.

There are multiple types of Selectors available in MATSim, depending on the equilibrium state that
a modeler intends to achieve. Best Reply Selector simply selects the best plan from the last iteration.
An MNL Selector applies the plan selection approach in a discrete choice way, which accounts for

stochasticity in agents’ behavior:
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P(i) =

Where i stands for the plan to examined, j is the plan the agent possesses in memory and u is the

scale parameter which is normalized to be 1.

A sequence of the three phases of mobsim, scoring, and replanning forms one iteration for the
model. One can consider the MATSim iteration process as an extension to a route assignment loop,
becoming a generalized “supernetwork” (Sheffi, 1985) in an activity chain context. It means that the
model process is designed to involve not only route assignment but also other choice dimensions,
such as mode choice and departure time choice, to reach a joint equilibrium. If a probabilistic
Selector is applied, the stable state at convergence is formalized in an agent-based Stochastic User
Equilibrium, which is defined as “a system state where agents draw from a stationary choice
distribution and where the resulting distribution of traffic conditions re-generates that choice
distribution.” (Nagel & Flotterdd, 2012). For each traveler, a collection of plans is maintained, with
which the population evolves simultaneously to converge to equilibrium. The so-called population-

based co-evolutionary algorithm is stated formally as follows (Table 4-1):

Table 4-1. Population-based Co-evolutionary Algorithm (adapted from Nagel & Flotterod, 2012).

1. Initiation: Generate at least one plan for every agent.

2. lterations: Repeat the following many times.

(a) Selection/Choice: Select one of the plans for every agent.

(b) Scoring: Obtain a score for every agent’s selected plan by executing all selected plans simultaneously in a simulation
and attaching some performance measure to each executed plan.

(c) Generation of new plans (innovation)/Choice set generation: For some of the agents, generate new plans; for

example, as “best replies” or as mutations of existing plans.

The convergence of the equilibrium is guaranteed from a Markov Chain perspective. Following the
algorithm introduced above, one iteration of the MATSIm iteration process requires only
information about the previous iteration’s outcome, thus by definition the process is characterized
by Markov Chain (Fl6tterdd, 2016). One important feature of Markov Chain is that, if both properties

of aperiodicity and irreducibility satisfy, given any initial state, there must be a unique stationary
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distribution that can be attained after sufficient iterations. To assure the properties, MATSim usually

applies certain settings in configuration, which is to be introduced in the next section.

4.2  MATSiIm as Travel Assignment Model

Despite MATSim’s efficiency and portability in simulating a large-scale agent-based simulation, this
study decides not to enjoy MATSim’s full function but instead to use it to model travel supply only.
As mentioned in Chapter 3, the reason for this is that MATSim by default cannot manage trip/tour
generation independently. To be noted, MATSim is equipped with destination innovation as an

extension module (Horni, 2013), but it seemed to be limited in discretionary location.

MATSim is thus used as a travel route assignment model for HVs and PAVs in this dissertation. For
this purpose, Reroute Mutator is the only mutator applied, with MNL Selector serving the MATSIim
replanning phase operators for this analysis. The share of agents (or possibility) to execute Reroute
Mutator and MNL Selector is set at 0.6 and 0.4, respectively. The mutators are switched off in the
final 10% of the simulation to guarantee the irreducibility property as a Markov Chain (Section 4.1)
and thus the existence and uniqueness of the solutions to the converged state. Irreducibility refers
to the property that every possible system state can be reached by the simulation (FI6tterod, 2016).
Apparently, irreducibility cannot hold when mutators are switched on because the replaced
previous plan (and its state subspace) is impossible to be reached unless that plan is “bred” again. It
should be noted that, however, the algorithm in MATSim is not rigorously irreducible (Fl6tterdd,

2016).

After assessing a different number of iterations, we set the number of MATSim iterations to 30 in
balancing the performance of convergence and computational cost. Score statistics records (Figure
4-3) indicate that measures such as average executed score become “flat” at around iteration 25.
The marginal scores of modes and activities are basically in line with the default settings in MATSim.

The Mutators are switched off since iteration 27 (i.e., 90% of 30).
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Figure 4-3. Score Statistics by MATSim Iterations.

As mentioned in the last section, MATSim adopts a queue-based approach to simulate traffic flow.
Queue-based approaches model traffic dynamics with waiting queues, without using more
sophisticated car following models. The way it compromises to not use a more detailed model is
undoubtedly due to the concerns of computational efficiency. It is also due to this reason that in this
specific application, traffic signals and other existing MATSim modular extensions relating to traffic
control are not incorporated. Instead, a general capacity factor of 0.66 is applied to the road network
data to reflect the delay effects from such as intersections. Note that this factor is applied combining
with another capacity to reflect the sample population ratio (Section 3.4.3), which was set at 0.0166,
anumber slightly higher than the ratio of the effective size and entire population in the study region.
The main reason for the difference is that it yields better validation results, which are presented in

the next section.

After the 30 iterations, we programmed MATSim to perform the shortest path calculation to retrieve

the congested travel impedance by building a Least Cost Path Tree (Lefebvre & Balmer, 2007) for
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each of the five time-of-day periods adopted in this study. For each time-of-day period, travel time
and distance of 3001 x 2617 mesh cell pairs (combining mesh dataset of Resident’s Mesh Dataset
and Activity System Mesh Dataset x Activity System Mesh Dataset) are calculated, which are to be

used as inputs for the travel demand model.

43 Model Validation

External validations are conducted to demonstrate the appropriateness of MATSIim as an
assignment model. 5,000 mesh cell centroid pairs are randomly drawn from a combining dataset of
Resident’s Mesh Dataset and Activity System Mesh Dataset. For each pair, we collected the actual
travel times and distances using the Google Matrix Distance APl and compared them with the travel
times and distances generated from MATSim. The comparisons are made for five time points (i.e.,
five o'clock; eight o’clock; thirteen o’clock; half past seventeen; and twenty-one o’clock) which are

the representative times for the five time-of-day periods used.

Comparisons between the MATSim data and Google API data are illustrated below in Figure 4-4 for
travel time and Figure 4-5 for travel distance. Linear regression results are plotted in red lines along
with blue lines standing for the identity line. The intercepts in the models are constrained to zero to

demonstrate the deviation more clearly between the data from the two different sources.

A general conclusion drawn from the results is that both travel time and distance comparisons

suggest that MATSim is adequate to predict the travel impedance data.
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Figure 4-4. Summary of MATSim Model Validation: Travel Time.
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Figure 4-5. Summary of MATSim Model Validation: Travel Distance.
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CHAPTER 5 TRAVEL DEMAND MODEL SPECIFICATION

This chapter focuses on the demand component in travel demand-supply equilibrium, regarding
which a general introduction and data processing procedures are first presented, and estimation

and validation results then follow.

5.1  Daily Activity Schedule Model as Travel Demand Model

In this dissertation, an activity-based travel demand model based on the Daily Activity Schedule
model (DAS model. Bowman, 1995; Bowman, 1998; Bowman & Ben-Akiva, 2001) is employed as the

travel demand model.

As introduced in Chapters 2 and 3, the DAS model adopts a utility-maximizing discrete-choice
protocol to forecast travel itinerary for an individual at a whole-day level. By this protocol, the travel
decisions, i.e.,, demands are “viewed as a utility maximizing individual’s choice of one day activity
schedule from a discrete choice set of all possible schedules” (Bowman, 1998). The definitions of the
“schedule” alternative vary among different DAS model specifications, but a main idea is shared that
tour decisions are and should be conditioned as well as constrained by the trip maker's activity

pattern decision. These two form the choices of “schedule” together.

The utility of the pattern alternative is also dependent on its conditional tours through the expected
utilities of the tours. By doing so, the sensitivity of pattern choice to the change in tour

characteristics is captured.

Specifically, the DAS structure applied in this dissertation is shown in Figure 5-1. This structure is
much closer to what was applied by Bradley et al. (2010) and Li (2015), both of which have been
mentioned in Section 2.1 as the subsequent DAS versions to the original ones. Three levels of
decisions: pattern-level decisions, tour-level decisions, and trip-level decisions (or stop-level
decisions) form the whole structure. Each level has multiple models concerning different facets of

one’s daily schedule: persons are assumed to draw an overall image of what activities they are going
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to do that day, then for those activities with higher priority several home-based tours are planned,

while those activities with less priority are either performed in other home-based tours or as an

intermediate stop or subtour trip based on the location of the primary activity. All the levels are

structured within the MNL framework, though the way of defining the alternatives may vary for the

two “generation” models for subtours and intermediate trips.
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Figure 5-1. DAS-type Travel Demand Model Structure.

The interrelationship across the decisions and models is indicated by the arrows in Figure 5-1. As the

legend suggests, the solid arrows in Figure 5-1 represent that the lower models are conditioned by

(i.e., receive model inputs from) the models pre-defined over them, while the dashed arrows

represent that pattern-level models are dependent on the expected maximum utility from some

certain lower models, whose actual decisions are to be made subsequently.
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Daily pattern level decisions include two models: Day Activity Pattern model to predict whether or
not to participate in tours and stops (i.e., intermediate trips and subtour trips) for each activity
purpose; and Exact Number of Tours model to predictin this day the exact number of tours of certain
activity purpose that is predicted true in the previous Day Activity Pattern model. This level offers to

model of substitution effects between extra tours and extra stops.

The number of stops for each tour is not predicted at this level, which is intentionally mentioned in
the technical memos of the Sacramento model (Bowman & Bradley, 2006) as a feature that
differentiated it from previous model designs. Instead, the exact allocation (to tours) and the
number of stops are handled with the information of tours is already known, which means after the
modeling of tour-level decisions. This design could offer better stop-level sensitivities as the

changes in tour-level characteristics are reflected.

Tour-level decisions also include two models for predicting the time of day and mode-destination
of each tour. Tours in this research are defined as a series of trips where the origin of the first trip
and the destination of the last trip are both homes. The time of day model predicts jointly departure
time of day (in five levels of temporal resolution, Early, AM Peak, Midday, PM Peak, and Late) of two
phases in each tour: the time point of the tour departs from home and leaves for home. For example,
AM Peak-PM Peak represents a tour that departs home at AM Peak and leaves for home at PM Peak.
The mode-destination model predicts jointly the primary destination mesh cell of each tour and the

mode of travel for it.

Stop-level decisions include multiple models to complement the trip-level information for each tour.
Besides the primary activity in one tour, trip-makers are sometimes observed to make extra stops
during the tour. These include subtour: any round trips with an anchor that is not home, and
intermediate trips: any detours to perform extra activity on the way to or back from the primary
activity destination. The exact number of these two types of stops and their mode-destination

information is modeled in the order shown in Figure 5-1.
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5.2  Tours and Activity Pattern Processing and Identification

To be applied in the subsequent forecasting, this model system is estimated with Gunma PT Data to
reflect the preferences of the study area. However, the PT data was collected with a traditional trip-
based survey so should be no exception from extensive data pre-processing. The most important is
to convert trips to tours and to identify other tour-level features such as subtours. This procedure is
necessary because in trip-based surveys respondents did not report explicitly the information of his

or her activity priorities and corresponding tour formation considerations.

The procedures listed in Table 5-1 explain the specific rules adopted in this research for “translating”
observed survey data to a form that is suitable for the following model estimation. Most of them

reference Bowman (1995; 1998) and Li (2015).

After tours and other day pattern level attributes are defined from the procedures above, a
descriptive analysis regarding travel-related characteristics of the demand data is given below in

Tables 5-2 and 5-3.

Several insights have been gained from the descriptive analysis of the processed Gunma PT data.
The respondents from the PT data on average generate 2.38 trips and 0.98 tours per person, and
243 trips per tour. These all exceed their Singapore counterparts with 1.81, 0.80, and 2.26,
respectively (Li, 2015), which suggests a relatively higher willingness to travel and potentially more
versatile tour patterns in Gunma. Being most noteworthy feature is that people in Gunma perform
only around half (50.1%) of their tours without making extra stops (i.e., “simple” tours that contain
only one leaving-home trip and one back-home trip), which is presumably caused by and more

sparse distribution of facilities in Gunma area so that people would drop by more.

112



Table 5-1. Tour and Activity Pattern Identification Procedures.

1.

Begin.

10.
11.

Pre-defining trip attributes.

For each trip, categorize and aggregate activity purpose: work-purpose trip; education-purpose
trip; other-purpose trip; and back-home-purpose trip.

For each trip, define its following activity duration as the difference between the arrive time of
the trip and the start time of its subsequent trip.

Define tours:
{loop on persons}
Set initially ID index of tour as by default one.
{loop on trips}
{If the trip is of back-home-purpose}
Assign the current tour ID to the looped trips with no tour ID; tour ID
is incremented by one.
{end loop on trips}
{end loop on persons}
Define attributes: number of trips per tour; number of tours per person by counting.
Define primary activity type by person: assuming priority is work/education > other, i.e., if a work-
or education-purpose activity observed, the primary activity type is assigned accordingly, else
the primary activity type is other-purpose.
Define primary trip by each tour:
{loop on persons}
{loop on tours}
Record the destinations of each trip.
Record the following activity durations of each trip.
{if any trip is heading for usual work or school location (reported from the
survey)}
Record the first trip that satisfies the requirement, as primary trip of
the tour.
{else}
Record the most-visited destination, with most total following activity
duration serves the tiebreaker.
Record the trip that headed for the most-visited destination, as
primary trip of the tour, with trip sequence serves the tiebreaker.
{end loop on tours}
{end loop on persons}
Define attributes: locations of primary trips by each tour; (Boolean) whether the trip is heading
for primary location of the tour; first and last trip heading for primary location of the tour.
Define primary trip by each person:
{loop on persons}
{if only one tour observed}
Record the primary trip of the tour as the primary trip of the person.
{else, loop on primary trip of tours}
{if any primary trip of tours is heading for usual work or school location}
Record the trips that satisfies the requirement and with most total
following activity duration, as primary trip of the person.
{else}
Record the trips with most total following activity duration, as primary
trip of the person.
{end loop on primary trip of tours}
{end loop on persons}
Define attributes: primary tour of the person, as the tour with the primary trip of the person.
Define attributes: secondary tour of the person, as the tour(s) other than the primary tour.
Define intermediate trips:
{loop on persons}
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Table 5-1 Continued.

End.

{loop on tours}
{if the primary trip of the tour is not the first trip of the tour}
Record all the trips between the first trip and the preceding trip of the
primary trip, as the intermediate trips before the primary destination.
{if the subsequent trip of the last trip that headed to the primary destination of
the tour is not directly heading home}
Record all the trips between the subsequent trip of last trip to the
primary destination and the last trip of the tour, as the intermediate
trips after the primary destination.
{end loop on tours}
{end loop on persons}
12. Define subtour trips:
{loop on persons}
{loop on tours}
{ifany, loop on trips between the first and the last trip to the primary destination}
Set initially ID index of subtour as by default one,
{if the trip is heading to primary destination of the tour}
Assign the current subtour ID to the looped trips with no
subtour ID; subtour ID is incremented by one.
{end loop on trips}
{end loop on tours}
{end loop on persons}
13. Define primary trip of subtour:
{loop on persons}
{loop on tours}
{loop on subtours}
Record the following activity durations of each trip in the subtour.
Record the trip with most following activity durations as the primary
trip for this subtour, with trip sequence serves the tiebreaker.
{end loop on subtours}
{end loop on tours}
{end loop on persons}
14. Define attributes: number of tours of work-, education-, and other-purpose per person; number
of subtour, subtour trips, and intermediate trips per tour per person.

Some interesting findings of the processed sample include that, for example, students on average

generate around 10% more tours but around 5% fewer trips than full-time workers.

In summary, a general descriptive analysis of Gunma people suggests relatively more complex travel

patterns there, particularly in the sense of making extra stops. More specific distributions regarding

each level of decisions in Figure 5-1 are presented in the next section.
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Table 5-2. Summary to the Individual level Travel-related Attributes in the Effective PT Data.

Level Segment Average #Tours Average #Trips
Total 0.98 2.38
Full-time worker 1.04 257
Temporary worker 1.01 241
Part-time worker 1.19 2.89
Job &  Board member 1.04 2.84
Employment
Individual Type Self employed 0.83 2.08
(Total #individuals = Family worker 0.86 2.08
33,300) Student 1.14 245
Unemployed or homemaker 0.79 1.95
Male 0.98 2.35
Female 0.98 2.40
Has kids younger than 6 in the household 1.23 3.09
Has no kid younger than 6 in the household 0.97 2.36

Segment

Count and Ratio of the segment

People who made no tour
People who made only 1 tour
People who made 2 tours

People who made 3 or more tours

6,083 (18.3%)

3,659 (11.0%)
760 (2.3%)

22,798 (68.4%)

Table 5-3. Summary to the Tour and Trip Level Travel-related Attributes in the Effective PT Data.

Count and Ratio of

Level Segment the segment per tour
Total 32,532 (100.0%) 243
Primary Work 16,567 (50.9%) 2.48
activity Education 3,171 (9.8%) 2.14
purpose Other 12,794 (39.3%) 2.44
Simple tour (no stop made at all) 16,293 (50.1%) 2.00
Tour (Total
Ftours - Has subtour Yes 1,212 (3.7%) 5.14
32,532) ornot No 31,320 (96.3%) 2.33
Tour Neither 24,983 (76.8%) 2.10
Pattern Has Only before primary destination 1,657 (5.1%) 334
intermediate  Only after primary destination 4,934 (15.2%) 3.40
trip or not Both bef d aft .
oth before and after primary o (2.9%) 460
destination
Work 19,722 (24.9%) -
Trip (Total Education 3,178 (4.0%) -
#trips = Activity purpose
79,166) Other 23,734 (30.0%) -
Back home 32,532 (41.1%) -
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5.3 Model Description and Estimation

This section presents the estimation results for all the models introduced in Figure 5-1 with the
datasets from Section 3.4. Maximum Likelihood Estimation is employed for all the models within the
programming language of R (R Core Team, 2021). For each model, the definition, the alternative
availability, and the observed distribution of the alternatives (i.e., the choice set) are described and

presented, followed by tables of the estimation results and several basic discussions.

The whole demand dataset is separated randomly by household to an 80% estimation sample and
a 20% validation sample for the subsequent validation procedure (Section 5.5). Note that all the
observed distributions (e.g., Figure 5-2) shown below refer to the distribution of the whole dataset.
Coefficients with a 90% confidence level (t value being larger than 1.645) are kept by the author’s

judgment.

In model designs, a summary of the types of variables applied is shown in Table 5-4, which suggests
that variables selection in this application of DAS is made in a rather parsimonious way in particular

for trip-level models.

5.3.1 Day Activity Pattern Level

This level of the model is designed to predict the occurrence of tours and stops (i.e., subtour or
intermediate trip) for each individual in the PT dataset. The definition and availability of the

alternatives are summarized below:
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Table 5-4. Summary of Variable Types Included in Each Level of Models.

Variable used:

Variable used:

Are variables

Variable used: . Variable used:  from higher-
Model . trip land use
demographics _— . logsum level models
characteristics characteristics .
included
Variable
category 3 5 2 4 -
(Section 3.1)
. .. Yes: from Tour
D:tllt)éf:tw'ty Yes mode and
P destination level.
Yes: whether the
Yes: from Tour
Exact number of tour has
tours ves mode and extra stop(s)
destination level. P
only.
Yes: whether the
Tour time of Yes tour has
day extra stop(s)
only.
Yes: whether the
Tour mode and Yes Yes Yes tour has
destination extra stop(s)
only.
Yes: primary
activity type
Subtour of its home-
. Yes.
generation based tour;
number of tours
remained, etc.
Yes: number of
tours
Number of Yes remained;
subtour trips ’ number of
subtours have
done, etc.
Yes: primary
Subtour mode Yes Yes mode of its
and destination home-based
tour only.
Yes: is the same
Destination of city as
nonprimary Yes Yes the tourland
subtour subtour’s
trips primary
destination only.
Yes: time of day
. ofits
Intermediate Yes. Full-time home-based
. . worker or not
trip generation tour; number
only
of tours
remained, etc.
Yes: is the same
Destination of gi’)?:-/i‘jZme and
intermediate Yes Yes

trips

Note: blank means not incorporated, omitted for readability.

tour’s
primary
destination only.

117



o Alternative definition: a 6-bit form of whether tour and stop of each 3 activity types: work-,
education- and other-purpose, in that order, would occur. For example, “100-001” means a
pattern having work-purpose tour and work-purpose occur. The hyphen mark is set for
convenience. The patterns that are assumed contradictory (e.g., 110-000 as work activity
and education activity cannot coexist) or not observed (e.g.,, 010-011) are excluded. See

Table 5-5 for a summary of the alternatives.

e Alternative availability: Work-purpose tour/stop: available to employees only; Education-
purpose tour/stop: available to students only; Other-purpose tour/stop: available to

everyone.

Table 5-5. Look-up Table of the Definition of Daily Activity Pattern.

Daily Occurrence of
Activity Work-purpose  Education- Other- Work-purpose  Education- Other-purpose
Pattern tour purpose tour purpose tour stop purpose stop stop

000-000 Stay at home all day
100-000 Yes

100-001 Yes Yes
100-100 Yes Yes

100-101 Yes Yes Yes
101-000 Yes Yes

101-001 Yes Yes Yes
101-100 Yes Yes Yes

101-101 Yes Yes Yes Yes
010-000 Yes

010-001 Yes Yes
010-010 Yes Yes

011-000 Yes Yes

011-001 Yes Yes Yes
001-000 Yes

001-001 Yes Yes

Note: blank means “No”, omitted for readability.

e Base characteristics for reference in estimating demographic variables: Female full-time
worker or board member in tertiary sector industry with age larger than 22 and no more

than 35, who does not have a kid with age less than 6 for work-purpose and other-purpose
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related alternatives; Middle school or high school students for education-purpose related

alternatives.

Find below Figure 5-2 for a summary for the observed alternative distribution and Tables 5-6 to 5-9

for the estimation results.
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Figure 5-2. Observed Count Distribution for Day Activity Pattern Model.

Table 5-6. Estimation Results for Day Activity Pattern Model (Part 1).

Variable ?;teec’i';iﬁc‘:)er;stant Age€ [6, 22] Age€ (35,)50] Age€ (50, 65) Age€ [65, 100]
Variable# #1-1 #1-2 #1-3 #1-4 #1-5
Alternative  Coef. Tvalue Coef. Tvalue  Coef. Tvalue  Coef. Tvalue  Coef. T value
000-000 Base alternative Base alternative Base alternative Base alternative Base alternative
100-000 1.08 3.52 -0.86 0.36 4.59 0.38 4.77 -0.56 -6.03
100-001 0.45 -1.39 -3.97 0.57 6.20 0.45 4.74 -0.33 -2.77
100-100 -2.30 -7.00 -1.45 1.02 6.83 1.36 9.02 0.72 3.99
100-101 -2.75 -7.59 -0.81 0.96 4.13 1.27 5.46 0.81 2.87
101-000 -4.38 -11.33 -0.28 1.22 7.89 1.10 6.84 0.48 2.56
101-001 -4.51 -11.67 -0.10 1.19 6.82 0.59 3.03 -0.35 -1.33
101-100 -8.75 -7.98 -0.09 2.77 2.68 2.94 2.84 2.26 2.09
101-101 -7.31 -9.91 -0.08 1.41 2.18 1.20 0.49
010-000 2.52 17.32

010-001 -0.51 -2.30

010-010 -4.63 -7.47 Not applied Not applied Not applied Not applied
011-000 -1.11 -4.95

011-001 -2.67 -9.84

001-000 -2.75 -16.89 -1.64 0.29 3.18 0.42 4.77 0.35 4.14
001-001 -2.79 -17.21 -1.08 -3.62 0.25 2.54 0.34 3.55 0.76
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Table 5-7. Estimation Results for Day Activity Pattern Model (Part 2).

. Temporary . Has kid age less

Variable vyorker or part- Self-employed Family worker Male than 6
time worker
Variable# #1-6 #1-7 #1-8 #1-9 #1-10
Alternative  Coef. Tvalue Coef. Tvalue  Coef. Tvalue Coef. Tvalue Coef. Tvalue
000-000 Base alternative Base alternative Base alternative Base alternative Base alternative
100-000 -0.77 -2.60 -26.88  -2.57 -1841  0.69 11.59 0.55
100-001 -1.03 -2.73 -17.42  -2.89 -12.82  -0.19 -2.66 091 4.56
100-100 -1.01 -6.04 -2.01 -12.76 -1.94 -6.58 1.26 11.08 0.74
100-101 -1.20 -4.76 -1.79 -7.26 -2.65 -4.43 0.41 2.57 0.94
101-000 0.71 5.70 -1.81 -9.29 -1.56 -6.02 0.93 0.27
101-001 0.98 6.65 -1.39 -5.30 -1.44 -4.13 -0.40 -2.79 1.05 3.74
101-100 -0.41 -1.62 -3.51 -1.29 -1.65 1.14 3.09 Not observed
101-101 -0.73 -1.64 -2.40 Not observed 1.46 0.47
010-000
010-001
010-010 Not applicable Not applicable Not applicable Not applicable Not applicable
011-000
011-001
001-000 0.33 2.77 -0.72 -5.76 -0.26 -1.74 1.31 0.70 3.77
001-001 0.51 4.10 -0.89 -6.11 -0.60 -3.22 1.49 0.68 3.45
Table 5-8. Estimation Results for Day Activity Pattern Model (Part 3).

orable Yooy Molisecondiy - Bimanschool ey studens
Variable# #1-11 #1-12 #1-13 #1-14
Alternative Coef. T value Coef. Coef. Coef. T value Coef. T value
000-000 Base alternative Base alternative Base alternative Base alternative
100-000 -0.39 -2.81 0.20 2.72
100-001 -0.66 -3.03 1.39
100-100 -1.12 -3.65 -0.44 -3.75
100-101 Not observed -0.45 -2.49
101-000 087 118 Not applicable Not applicable
101-001 -1.04 -1.99 -1.26
101-100 -0.02 -1.46 -2.73
101-101 -0.05 -1.43
010-000 0.89 3.46 -2.35 -10.35
010-001 2.24 7.49 -1.39 -4.20
010-010 Not applicable Not applicable Not applied Not observed
011-000 1.29 4.70 -4.02 -9.27
011-001 1.31 379 -3.40 -5.24
001-000 -1.26 -0.45 -3.89 0.72 1.69 -0.81 -2.06
001-001 -0.47 -2.12 -0.58 -4.48 0.31 -1.07 -1.95
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Table 5-9. Estimation Results for Day Activity Pattern Model (Part 4).

Logsum from Logsum from Logsum from
mode-

Variable Homemaker Unemployed - mode-destination  mode-destination
destination of .
of education tour  of other tour

work tour
Variable# #1-15 #1-16 #1-17 #1-18 #1-19
Alternativ. Coef. Tvalue Coef. Tvalue Coef. Tvalue  Coef. T value Coef. T value
e
000-000 Base alternative  Base alternative  Base alternative Base alternative Base alternative
100-000 0.072 2.36
100-001 0.072 2.36
Not applicable
100-100 0.072 2.36
100-101 0.072 2.36
Not applicable
101-000 0.072 2.36 0.24 16.38
101-001 0.072 2.36 0.24 16.38
101-100 Not applicable Not applicable 0.072 2.36 0.24 16.38
101-101 0.072 2.36 0.24 16.38
010-000 0.19 4,19
010-001 0.19 4,19 Not applicable
010-010 0.19 4.19
011-000 Not applicable 0.19 4.19 0.24 16.38
011-001 0.19 4,19 0.24 16.38
001-000 0.31 3.44 061 0.24 16.38
Not applicable
001-001 0.21 2.17 -0.66 0.24 16.38

Table 5-10. Summary Statistics for Day Activity Pattern Model Estimation Results.

Observations 26,688
Initial likelihood -52,244.25
Final likelihood -33,917.83
Adjusted rho squared 0.348

The estimation results above can be explained as, for example, by checking Variable #1-6 we can
find that compared to full-time workers, temporary or part-time workers are more likely to conduct
other-purpose activity as separate home-based tour rather than as a stop, when they already had a

work-purpose tour made.

In summary, many demographic variables are found significant in the likelihood of choosing
different day activity patterns. Mode-destination logsum variables were estimated for three types of

activity purposes, they are found positively related to the likelihood of traveling to these activities.
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5.3.2 Exact Number of Tours Level

This level of the model is designed to predict the exact number of tours for each individual. The

definition and availability of the alternatives are summarized below:

e Alternative definition:

o Work-purpose tour model: 1 work-purpose tour; 2 work-purpose tours; 3 or more

work-purpose tours.

o Education-purpose tour model: 1 education-purpose tour; 2 education-purpose

tours.

o Other-purpose tour model: 1 other-purpose tour; 2 other-purpose tours; 3 other-

purpose tours; 4 or more other-purpose tours.

e Alternative availability: all considered available unless no tour for the specific purpose was

made at all.

e Base characteristics for reference in estimating demographic variables:

o Work-purpose and other-purpose tour model: female full-time worker or board
member with age larger than 22 and no more than 35, who does not have a kid with

age less than 6.

o Education-purpose tour model: Middle school or high school students.

Find below Figure 5-3 for a summary for the observed alternative distribution and Table 5-11 to

Table 5-13 for the estimation results.

The estimation results of this level also confirm the relationships between the individual-level
demographics and the number of tours made. For example, those who are self-employed or being
family workers are more likely to make multiple work tours compared to full-time workers (Variable
#2-8 and Variable #2-9), which is presumably attributed by more working flexibility of them and

higher frequency to do work-related errands out home. Inference could also be drawn from the
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number of other-purpose tour model by the similar way. However, the results from the number of
education-purpose tour model provide very limited insights, with only coefficient of logsum found
significant. This is not surprising as education-purpose tours are found mostly conducted only once
a day (Figure 5-3), and a very high rho squared indicates that alternative-specific constant and the

logsum are adequate to explain the features of the two alternatives.
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Figure 5-3. Observed Count Distribution for Exact Number of Tours Models.
To be noted, logsum variable is not found significant for the number of work-purpose tour model,
which suggests that being more accessible to the work-related facilities from the anchor (i.e., home)
does not induce more tours for this activity purpose. This is not the case for the number of
education- and other-purpose models, where more activity flexibilities are presumably enjoyed.
Presumably, the reason for this is the less flexibility of work-related activities than those with

education or other purposes.
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Table 5-11. Estimation Results of Exact Number of Work-purpose Tours.

1 work tour 2 work tour 3 or more work tours
Variable Variable#
Coef. Tvalue  Coef. Tvalue Coef. Tvalue

Alternative-specific constant  #2-1 -4.22 -6.26 -12.23 -3.55
Logsum from mode-
destination model of work- #2-2 -0.17 0.96
purpose tour
Age€ [6, 22] #2-3 0.97 Not observed
Agee€ (35, 50) #2-4 0.39 2.11 0.80
Age€ (50, 65) #2-5 0.69 3.71 0.41
Agee€ [65, 100) #2-6 1.27 6.24 1.46
Temporary worker or part- Base alternative

emporary P #2-7 0.54 4.06 0.84
time worker
Self-employed #2-8 2.04 13.64 3.86 547
Family worker #2-9 1.92 820 443 5.31
Male #2-10 -0.22 -1.81 1.12
Has kid age less than 6 #2-11 -1.50 Not observed
Has work-purpose stop #2-12 0.43 2.68 -1.15
Has other-purpose stop #2-13 1.07 0.20
#Observations 12,770
Initial likelihood -14,050.15
Final likelihood -1,753.26
Adjusted rho squared 0.874

Table 5-12. Estimation Results of Exact Number of Education-purpose Tours.
1 education tour 2 education tour
Variable Variable#
Coef. Tvalue Coef. Tvalue

Alternative-specific constant #2-14 -5.85 -11.06
Logsum from mode—destlnatlon 4215 048 290
model of education-purpose tour
University student #2-16 Base alternative 0.52
Primary school student #2-17 0.17
Has education-purpose stop #2-18 -0.05
Has other-purpose stop #2-19 0.37
#Observations 2,514
Initial likelihood -1,742.57
Final likelihood -127.66
Adjusted rho squared 0.923
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Table 5-13. Estimation Results of Exact Number of Other-purpose Tours.

1 other tour 2 other tours 3 other tours 4 or more other tours
Variable Variable Coef. T
# ot Coef. Tvalue Coef. Tvalue Coef. Tvalue
value
Alternative- #2-20 296 -1010  -499 841 729  -6.54
specific constant
Logsum from
mode destination , ,, 021 697 0.25 4.07 0.31 2.51
model of other-
purpose tour
Age€ [6, 22] #2-22 -0.78 -3.22 Not observed
Agee€ (35, 50) #2-23 1.25 0.42 2.24
Age€ (50, 65) #2-24 -0.39 -3.39 -0.66 -3.05
Agee€ [65, 100) #2-25 -0.36 -3.30 -0.81 -3.97
Temporary worker
or part-time #2-26 1.57 0.45 1.86
worker Base
Self-employed #2-27 alternative -0.86 -1.02 -1.91
Family worker #2-28 -0.67 0.61 1.67 Not applied or
Homemaker or #2-29 0.68 0.70 observec{ (few
unemployed observations)
Male #2-30 0.15 0.26 1.87
Haskidageless ) 34 055  3.09 1.00 3.82
than 6
Haswork-oredu-, 5 085 736 -203 -7.22
purpose tour
Haswork-oredu-, 53 108 -1.80 0.30
purpose stop
Has other-purpose ) 5, 1.51 023 1.91
stop
#0Observations 8,013
Initial likelihood -11,108.37
Final likelihood -5,234.97

Adjusted rho squared 0.526

5.3.3 TourTime of Day Level

This tour level consists of three models to predict departure and back-home time for each tour with

the three types of activity purposes.

Due to the concern of computational burdens, a relatively coarse temporal resolution: time of day
is chosen as the basic unit for the modeling alternatives. By looking into the distribution of trip start

time (Figure 5-4), we can recognize two peaks and three valleys from the current travel patterns.
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Therefore, the time points are aggregated to five time periods called “time of day”:

e 3:00 AM to 6:59 AM as “Early”.

e 7:00 AM to 9:00 AM as “AM Peak”.
e 9:01 AM to 3:59 PM as “Midday".
e 4:00 PM to 7:00 PM as “PM Peak”.
e 7:00 PMto 2:59 AM as “Late”.

The aggregation is shown with color in Figure 5-4.

10235

10000 TimeOfDay
Early
7898 AM Peak
7500 7258 Midday
6396 PM Peak
6013 Late
et
S 5117
© 5000 4700
O 4370
4026 3952 3930 4024
3665
2500 2291
1940
1503
831
402 313
28 88 93 56 37
Q0
(2] (2] (2] (22 [} (o2} [} D [o)] (2] [¢2] [s)] (o)} [e2] (2] [o2] (2]
(o2} [ D [+)] (2] [¢2] [9)] wn n n wn un wn wn wn wn wn wn wn wn n n un wn
I T T B T T O S R - -
$ ¥ % & 5 & & ¢ 5 o = ¢ - 5 T T - & & ¢ g g q d
(=] (=) [=] (=] o o Q o o (=] [=] (=] o (=) [=] (=] [=] o Q (=] o o (=) (=]
& & & 8 ¢ & & & & & & & © © & ©& & © © © & © o 29
o <t ['3) o ~ « o o ~— o o -3 w [(e] M~ o« (2] o — o [2¢] < n [{e]
— — — — - — - — - — ~ o o™ o o~ N N
Trip Start Time

Figure 5-4. Observed Trip Start Time Distribution.

The definition and availability of the alternatives are summarized below:

o Alternative definition: time of day combinations of the trip departure from home (i.e., the

first trip of the tour) and the trip leaving for home from the primary destination.

o Alternative availability: all alternatives are available unless found overlapped with time-of-
day of the tour(s) that have been made. For example, alternative of Midday-Midday would

not be available as the second tour of one certain individual if he or she had made an AM
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Peak-PM Peak tour previously.

Find below Figure 5-5 for a summary for the observed alternative distribution, and Table 5-14 to

Table 5-16 for the estimation results.
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Figure 5-5. Observed Count Distribution for Time of Day Models.

Explanations to the time of day models are straightforward as they are built in a relatively simple
way, with one exception: variable whether the person planned a stop in that given day as an effect
passed from the activity pattern level models. For example, the results found those people who have
planned to make extra stop tend to make short work tours (in the sense of time) around midday for
(Variable #3-4), which can be explained from two different perspectives: one possibility is that
people tend to make work-related errands with multiple short trips involved at midday; another is
that people tend to make their tour not across many time periods, as they need to save the time
budget for another tour with stops in other time of the day. This discrepancy is caused by the
limitation of the day activity pattern level in this specific model design, as we assume that the trip
makers at this point have no information which tour are attached with extra stop(s) if they are

predicted to make at least one.
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Table 5-14. Estimation Results of Time of Day Model for Work-purpose Tours.

Alternative-specific

Full-time worker or

Variable constant board member Is not primary tour Has stop in this day
Variable# #3-1 #3-2 #3-3 #3-4

Alternative Coef. Tvalue Coef. Coef. Coef. Tvalue Coef. Tvalue
Early-Early -6.55 -10.05 -1.12 Not observed 0.85
Early-AM Peak -4.35 -18.52 -2.30 -5.57 6.54 9.00 -1.30
Early-Midday -2.63 -25.45 -1.29 -9.31 4.44 6.03 1.09
Early-PM Peak -2.28 -25.54 0.68 7.08 Not observed -0.42 -4.97
Early-Late -3.75 -20.57 1.59 8.46 -0.20 -0.72 -5.67
AM Peak-AM Peak  -5.17 -17.11 -1.09 -3.26 6.06 822 1.13 3.40
AM Peak-Midday -0.99 -19.29 -2.16 -29.36 5.65 9.51 0.75 10.68
AM Peak-PM Peak  Base alternative

AM Peak-Late -1.93 -25.30 1.26 15.72 Not observed -0.54 -8.89
Midday-Midday -2.03 -26.80 -2.51 -21.48 6.57 11.00 0.95 9.40
Midday-PM Peak -1.46 -23.91 -2.00 -22.18 6.05 10.15 0.28 3.05
Midday-Late -1.91 -25.76 -0.79 -8.49 3.62 538 -0.44 -3.97
PM Peak-PM Peak -5.48 -16.49 -2.47 -6.74 8.63 12.62 0.83 2.45
PM Peak-Late -3.18 -24.38 -2.28 -10.45 6.71 10.76 -1.51
Late-Late -5.42 -15.94 -1.74 -4.38 7.94 11.31 0.26
#Observations 13,206

Initial likelihood -35,520.00

Final likelihood -20,688.50

Adjusted rho squared 0416

Another major limitation of time of day models is that no logsum variables from the lower models

are included?. Designs with logsum freely estimated were tested but some are found not significant

or in incorrect sign. This might be caused by relatively low overall congestion level in the study

region.

5.3.4 Tour Mode and Destination Level

This tour level consists of, again, three models to predict jointly mode of travel and destination for

each tour corresponding to respectively the three types of activity purposes. The definition and

availability of the alternatives are summarized below:

2 In other words, the coefficients of logsum variables are constrained to 1.0.
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Table 5-15. Estimation Results of Time of Day Model for Education-purpose Tours.

Alternative-specific

Primary school

Variable constant University student student Has stop in this day
Variable# #3-5 #3-6 #3-7 #3-8
Alternative Coef. Tvalue Coef. Coef. Coef. Tvalue Coef. Tvalue
Early-Early Alternative not observed
Early-AM Peak Alternative not observed
Early-Midday 01 1497 Not observed I\(IFOZ:/ZKZ)I;ZCrIvaﬁons) I\(Il?efv?/eg;z(rjvations)
Early-PM Peak -2.64 -18.72 -1.31 -1.80 -0.41 1.28
Early-Late -5.00 -14.97 Not observed Not observed I\(IFO;T/ZFZ;ervations )
AM Peak-AM Peak  Alternative not observed
AM Peak-Midday -1.38 -17.58 -1.31 1.79 18.25 0.57 4.18
AM Peak-PM Peak  Base alternative
AM Peak-Late -3.03 -18.07 1.69 5.97 -1.41 -2.95 -0.56
Midday-Midday -6.26 -9.74 3.94 5.65 -0.16 0.66
Midday-PM Peak -7.57 -7.28 6.15 5.87 2.75 2.49 1.11 2.69
Midday-Late -5.52 -15.02 Not applied . Not observed Not observed

(Few observations)
PM Peak-PM Peak  -6.51 -13.44 Not observed I\(IFOZ:/FZZ)I;ZCrIvaﬁons) I\(IFOJ:/TZ;Z(:'vations)
PM Peak-Late =91 gl Izllfet:/iﬁl))l;z‘rjvations) I\(II—?;;F:),:)Ilsee-(rjvations) Not observed
Late-Late -8.31 -8.01 Not observed Not observed Not observed
#Observations 2,538
Initial likelihood -6,285.09
Final likelihood -2,237.74

Adjusted rho squared 0.640

e Alternative definition: mode-destination pairs combining one of the travel modes from Car
driver, Car passenger, Bicycle, and Walk; and one of the mesh cells from a 100-mesh-cell set

sampled out of the total 2611 mesh cells in Activity System Mesh Dataset.

o Alternative availability:

o Travel modes:

= (Car driver: available to car availability attribute being “Always available” or

“Shared with other household members” (Table 3-3).

= (Car passenger and walking: available to all.

129



= Bicycle: available to members in a bicycle owned household.

o Travel destination: Available to all unless those distance from the origin exceed
mode-specific 99 percent quantile (before the filtering, see Table 3-2) which are

16.647 km for bicycle mode and 3.710 km for walking mode.

Table 5-16. Estimation Results of Time of Day Model for Other-purpose Tours.

Alternative-specific

Variable constant Age€ (65, 100) Is not primary tour Has stop in this day
Variable# #3-9 #3-10 #3-11 #3-12
Alternative Coef. Tvalue Coef. Tvalue Coef. Tvalue Coef. Tvalue
Early-Early -5.97 -15.70 0.79 242 1.68 4.84 -0.67 -1.83
Early-AM Peak -6.27 -11.56 -0.34 1.00 1.80 -0.40
Early-Midday -4.60 -17.17 1.52 -045 -0.51
Early-PM Peak -6.34 -8.74 1.55 2.03 -0.12 -1.23
Early-Late Alternative not observed

‘;\2'; I': eak-AM 351 2517 -0.93 -5.86 167 11.64 -1.40
AM Peak-Midday -1.80 -26.90 0.28 3.99 -0.07 0.27 3.86
‘:2’; I': eak-PM -3.48 -20.52 0.57 271 -2.70 -0.40
AM Peak-Late -6.13 -9.35 -0.96 -0.10 0.46
Midday-Midday Base alternative

Midday-PM Peak -1.44 -24.86 -0.96 0.21 3.00 1.05
Midday-Late -3.90 -19.46 -0.96 -3.57 -1.13 -2.83 0.41 1.68
gz_’; :eak'PM -1.89 2770 -0.60 -7.84 144 19.65 -0.47 -6.36
PM Peak-Late -2.37 -26.94 -1.27 -10.83 1.41 14.59 -0.44 -4.59
Late-Late -3.21 -24.78 -1.95 -10.88 2.26 16.66 -0.49 -4.59
#Observations 10,329

Initial likelihood -25,626.51

Final likelihood -15,020.26

Adjusted rho squared 0412

Alternative sampling procedures are elaborated slightly here. It has been proved by McFadden
(1978) that maximization of conditional likelihood function with a subset of the universal choice set
yields consistent estimates of the unknown parameters under regularity conditions. Specifically,
method of Importance Sampling with Replacement (Ben-Akiva & Lerman, 1985) is used in the
estimation and subsequent model simulation for the destination choice. This method draws from

the whole choice set a sample jfor individual n with probability:
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Where E;is the number of employees of mesh cell j; dj, is the network distance to jfrom the home
of individual n; and mean(d) is the average observed tour distance of that specific activity purpose.
The form of g;, is reference to what suggested by Ben-Akiva and Lerman (1985). The alternative
sampling procedure was implemented separately for work-, education-, and other-purpose tours as
different types of number of employees are associated: all employees, employees in educational

sector, employees in tertiary sector, are applied for the three models, respectively.

Two bias correction terms are added to the utility functions due to the using of alternative sampling
and aggregation of alternatives to ensure consistent parameter estimation (Ben-Akiva & Lerman,
1985). First, a natural log of the inverse of the sampling probability g;»is required to cancel out the
extra information earned from sampling alternatives with high g;.. Second, a nature log of the term
representing the size, i.e., the number of elemental alternatives, of each aggregate alternative is
required to concern the difference in scale among the aggregated alternatives. Specifically, a nature
log of number of offices in each mesh cell was applied. Different office types are considered in
different models of activity purpose as done in the alternative sampling. The second term is also
called Size Variable despite no coefficient is required to estimate in the case of including only single

measure.

Find below Figure 5-6 for a summary for the observed alternative distribution, and Tables 5-17 to 5-
19 for the estimation results. Note that travel time for bicycle and walking are calculated from car

distance by assuming a distance factor of 0.9 and speed of 10km/h and 4.5 km/h, respectively.

The major findings of this level include that the coefficients of travel time for car, bicycle, and
walking are found in an expected order, and most of the land use variables and demographic
variables are found significant. Also, whether travel stop is made in the day are found significant
(Variable #4-5; #4-15; #4-23), which suggests that basically compared to drive a car, trip makers are

less likely to choose walking or bicycle if they knew that they would make a stop.
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Figure 5-6. Observed Count Distribution for Tour Mode.

Table 5-17. Estimation Results of Mode-destination Model for Work-purpose Tours.

1651

walk

1155
= Bl

Car Driver Bicycle Walk Car Passenger
Variable Variable#

Coef. Tvalue Coef. Tvalue Coef. Tvalue Coef. T value
Alternative-specific | 094 235 1962 -334  -19.28
constant
Agee€ [6, 35] #4-2 0.60 6.32 -0.44 -0.34
Male #4-3 Basealtemative 58 328 019 192 094  -550
Is not primary tour #4-4 -0.37 1.23 7.03 0.90 2.87
Has stop in the day #4-5 -0.73 -6.79 -1.27 -8.32 0.02
Travel time (hour) #4-6 -5.86 -98.00 -6.70 -35.78 -1444 -31.41 -8.57 -15.81
#Employees of tertiary ,, , 0026 4572 0026 4572 0026 4572 0026 4572
sector®/size variable
#Employees of
primary and _ #48 0027 6255 0027 6255 0027 6255 0027 6255
secondary sector*/size
variable
Is the same city as #4-9 086 3566 086 3566 086 3566 086 3566
origin's
Size variable: #Offices - 1.00 - 1.00 - 1.00 - 1.00 -
#Observations 13,206
Initial likelihood -82,169.88
Final likelihood -57,839.20
Adjusted rho squared  0.296

3 Corresponding to industry category F-R from the data of Economy Census 2016. See also

https://www.soumu.go.jp/toukei_toukatsu/index/seido/sangyo/02toukatsu01_03000044.html#o (in Japanese) for the
Japanese Standard Industry Category (“ H AN HEFEZE534H” in Japanese).
4 Corresponding to industry category A-E from the data of Economy Census 2016.
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Table 5-18. Estimation Results of Mode-destination Model for Education-purpose Tours.

Car Driver Bicycle Walk Car Passenger
Variable Variable#

Coef. Tvalue Coef. Tvalue Coef. Tvalue Coef. Tvalue
Alternative-specific #4-10 178 <190 289  -20.93 393 2176
constant

Not applicable
Is university student #4-11 (car drivers all 2.50 3.14 2.50 2.88

satisfy)
Is primary school Base alternative

#4-12 Not observed -6.28 -10.71 -0.70

student
Male #4-13 -1.20 -1.94 1.30 -0.29 -2.05
Is not primary tour #4-14 1.32 0.45 274 4.62
Has stop in the day #4-15 2.47 3.19 1.94 6.17 3.74 19.28
Travel time (hour) #4-16 -4.96 -5.70 -8.23 -41.47 -13.24 -49.86  -34.54 -34.67
#Employees of
education sector®/size #4-17 0.030 39.69 0.030 39.69 0.030 39.69 0.030 39.69
variable
Size varlaple: #Offices i 100 ) 1.00 ) 1.00 i 100 )
of education sector
#0bservations 2,538
Initial likelihood -14,586.94
Final likelihood -6,376.88
Adjusted rho squared 0.561

Table 5-19. Estimation Results of Mode-destination Model for Other-purpose Tours.

Car Driver Bicycle Walk Car Passenger
Variable Variable#
Coef. Tvalue Coef. Tvalue Coef. Tvalue Coef. Tvalue
Alternative-specific #4-18 119 1058 298 3013 -257  -3248
constant
Agee€ [6, 25] #4-19 -1.21 -3.71 -2.53 -7.43 1.14 3.92
Agee€ [65, 100] #4-20 0.89 0.51 0.60 7.89
Base alternative
Male #4-21 -0.89 -1.29 -1.02 -12.19
Is not primary tour #4-22 -0.27 -2.67 0.65 8.15 -0.37 -4.51
Has other-purpose #4-23 044 445 074 855 023 323
stop in the day
Travel time (hour) #4-24 -1450 -108.10 -18.39 -3860 -19.86 -48.48  -12.19 -64.91
#Employees of tertiary ¢ 0024 31.23 0024 3123 0024 3123 0024  31.23
sector/size variable
Is the same city as #4-26 087 2788 087 2788 087 2788 087  27.88
origin’s
Size va!rlable: #Offices ) 100 ) 100 i 1.00 i 100 )
of tertiary sector
#0Observations 10,329
Initial likelihood -66,540.42
Final likelihood -41,842.51
Adjusted rho squared 0.371

> Corresponding to industry category O (“#(#, %% E3" in Japanese) from the data of Economy Census 2016.
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5.3.5 Subtour Generation Level

This level of the model is applied in a repeated so-called stop-and-go process (Li, 2015). Each time
the model predicts to generate a new work-purpose, or other-purpose subtour (no education-
purpose subtour was observed), or to quit the repeating process. The main reason to adopt this

process is to save the efforts to model number of different activity purpose separately.

Another feature of this model is that not only work-based subtours are included (as did by many

existing research) due to the versatility of travel pattern in Gunma (Table 5-20).

Table 5-20. Observed Count for Activity Purpose of Primary Tour Activity by Each Subtour.

Activity Purpose of Primary Tour

Activity by Each Subtour Count
Work 1,132
Education 247
Other 3

The definition and availability of the alternatives are summarized below:

o Alternative definition: to generate a work-purpose subtour; to generate an other-purpose

subtour; to quit.

e Alternative availability: subtour are available to who the occurrence of stop of

corresponding activity purpose is predicted true in Day Activity Pattern Model.

Find below Table 5-21 for a summary for the observed number of subtours by each tour, Figure 5-7
for the observed distribution of subtour choice outcomes, and Table 5-22 for the estimation results.
Note that those who made either a work- or other-purpose stop but are observed to make no

subtour, (i.e., chose to make intermediate stop) are included in the estimation dataset as quit choice.

Multiple variables that are conditioned by higher model are included, whose results are found
intuitively correct. For example, the longer distance between the primary destination and home, the
less possibility to make a subtour (Variable #5-4); the longer time window the tour has, the higher

probability to make a subtour (Variable #5-5), both irrespective of the subtour purpose.
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Table 5-21. Observed Counts of Subtour Numbers by Each Tour.

Number of subtours by each tour Count
0 31,320
1 1,064
2 131
3 14
4 2
6 1
10242
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Figure 5-7. Observed Subtour Choice Outcome Distribution.

Table 5-22. Estimation Results of Subtour Generation Model.

Generate Work-

Generate Other-

Variable Variable# Quit purpose Subtour purpose Subtour
Coef. Tvalue Coef. Tvalue Coef. Tvalue

Alternative-specific constant #5-1 -2.66 -11.10 -47 -28.76

Number of home-based tours remained #5-2 1.21 -0.41 -2.67

Prlm'ary activity type qf its home-based 45.3 Not applicable 244 13.72

tour is work or education

Distance between primary destination ¢ Base alternative  -0.04 496 003  -3.33

and home (km)

Time difference betweer'l depe?rture 455 037 1536 043 18.43

home and back home trips (min)

Number of subtour have been done #5-6 -2.52 -1843  -1.23 -5.78

Its home-based tour is not primary tour #5-7 -0.83 0.59 3.22

#0Observations
Initial likelihood
Final likelihood

Adjusted rho squared

9,287
-6,613.58
-2,254.06
0.657
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5.3.6  Number of Subtour Trips Level

This level is a relatively simple one to predict the number of trips in each subtour, with a very similar
design to Exact Number of Tours Level. It is necessary to include this level of the model because a
considerable share of subtours is observed associated with multiple trips. The definition and

availability of the alternatives are summarized below:

o Alternative definition: 1 trip; 2 trips; 3 or more trips (the trip back to the primary destination

does not count).
e Alternative availability: All considered available.

Find below Figure 5-8 for the observed distribution of the number of subtour trips, and Table 5-23

for the estimation results.

Mode results of this level suggest relatively limited insights compared to the subtour generation
model as many variables are found insignificant. But still, a larger time window is found positively
related to the possibility of making 3 or more trips compared to the base alternative of a single trip
(Variable #6-6). Also, the more subtours have been done, the less likely would the trip maker to make

a subtour with 3 or more subtour trips (Variable #6-7).
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Figure 5-8. Observed Number of Subtour Trips Count Distribution.
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Table 5-23. Estimation Results of Number of Subtour Trips Model

1 trip 2 trips 3 or more trips
Variable Variableit

Coef. Tvalue Coef. Tvalue Coef. Tvalue
Alternative-specific constant #6-1 -1.57 -6.09 -3.40 -8.04
Activity type of subtour is work #6-2 0.79 2.86 0.72 2.34
Primary act!wty type of its home- 463 120 339 082 178
based tour is work
Primary act!wty type. of its home- 46-4 -0.09 011
based tour is education
Distance between primary #6-5 Base alternative 0,50 FRT
destination and home (km) : ’
Time difference between
departure home and back home #6-6 1.17 0.17 3.65
trips (min)
Number of subtour have been #6-7 144 058 171
done
#0Observations 12,770
Initial likelihood -1,218.36
Final likelihood -763.31
Adjusted rho squared 0.362

5.3.7 Subtour Mode and Destination Level

The primary mode and destination for each subtour are estimated in this level, with a similar design
to the Tour Mode and Destination Model. Two models are estimated corresponding to the two
observed subtour activity types. The definition and availability of the alternatives are summarized

below:

o Alternative definition: mode-destination pairs combining one of the travel modes from Car
driver, Car passenger, Bicycle, and Walk; and one of the mesh cells from a 100-mesh-cell set

sampled out of the total 2,611 mesh cells in Activity System Mesh Dataset.

e Alternative availability:

o Travel modes:

= (Cardriver: available to whose primary mode is car driver.

= (Car passenger and walking: available to all.

= Bicycle: available to whose primary mode is bicycle.
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o Travel destination:

= Available to all unless those distance from the origin exceed mode-specific
99 percent quantile of subtour trips which are 6.177 km for bicycle mode

and 2.100 km for walking mode.

Destination alternative sampling was also applied with the same method introduced in Tour Mode

and Destination Model, and so do the correction terms.

Find below Figure 5-9 for the observed distribution of the number of subtour trips, and Tables 5-24

and 5-25 for the estimation results.

Explanations and findings are basically similar to its home-based tour counterparts, except that the
information on the travel mode used by its corresponding home-based tour was added as Variable
#7-2 and Variable #7-8. However, only the effect of car passenger mode in the other-purpose model
is found significant, which suggests a tendency to still let others drive you in the subtour when that

is the case in the corresponding primary tour.
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Figure 5-9. Observed Subtour Primary Mode Count Distribution.
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Table 5-24. Estimation Results of Work-purpose Subtour Mode-destination Model.

Car Driver Bicycle Walk Car Passenger
Variable Variable#

Coef. Tvalue  Coef. Tvalue Coef. Tvalue Coef. T value
Alternative-specific 7 4 348 352 398 858 263  -12.51
constant
| th e of Base Alternative
s same with mode o .
its home-based tour #7-2 Not applicable 0.46 0.28
Travel time (hour) #7-3 -5.06 -2069  -23.73 -3.56 -26.61  -7.21 -3.82 -8.92
#Employees of tertiary ;| 0020 512 0020 512 0020 512 0020 512
sector/size variable
#Employees of
primary and ) #7-5 0021 806 0021 806 0021 806 0021 806
secondary sector/size
variable
Is the same city as 4#7-6 122 1106 122 11.06 122 1.06 122 11.06
origin
Size variable: #Offices - 1.00 - 1.00 - 1.00 - 1.00 -
#0bservations 684
Initial likelihood -3,973.50
Final likelihood -2,811.88
Adjusted rho squared 0.289

Table 5-25. Estimation Results of Other-purpose Subtour Mode-destination Model.

Car Driver Bicycle Walk Car Passenger
Variable Variable#

Coef. Tvalue  Coef. Tvalue Coef. Tvalue Coef. T value
Alternative-specific 7 178 206 511 13.74 347 -11.58
constant
| th de of Base Alternative
s same with mode o .
its home-based tour #7-8 Not applicable 0.50 2.24 3.36
Travel time (hour) #7-9 -12.73 -21.30 -19.25 -3.94 -34.01 -10.37 -8.42 -11.95
#Employees of tertiary ., 0025 662 0025 662 0025 662 0025 662
sector/size variable
Is the same city as #7-11 084 554 084 554 084 554 084 554
origin’s
Size va!rlable: #Offices ) 100 ) 1.00 i 1.00 i 100 )
of tertiary sector
#0Observations 425
Initial likelihood -2,637.54
Final likelihood -1,565.59
Adjusted rho squared 0.402

5.3.8

Destination of Non-Primary Subtour Trips Level

This level predicts the destinations in subtour trips for those that are not the primary ones, so called

“non-primary subtour trips”, which can also be considered as the “intermediate trips in subtours”.
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An assumption that people do not modify their mode of travel inside a subtour has been imposed
so that modes in these non-primary subtour trips are not included. One important difference in this

level is that travel impedance for the alternative jis a difference term as d;:

d], = d]p + djsp - dpsp

Where p is the tour primary destination, S, is the subtour primary destination. The d;can be called

“detour distance”.
The definition and availability of the alternatives are summarized below:

e Alternative definition: meshes from a 100-mesh-cell set sampled out of the total 2,611 mesh

cells in Activity System Mesh Dataset.
e Alternative availability: all considered available.

Destination alternative sampling is also applied with the same method introduced in Tour Mode

and Destination Model, and so do the correction terms. Find Table 5-26 for the estimation results.

Table 5-26. Estimation Results of Destination of Non-Primary Subtour Trip Model.

Variable Variable#  Coef. T value
Detour distance (km) #8-1 -0.18 -20.76
#Employees of' tertiary 482 0.025 488
sector/size variable

#Employees of primary and

secondary sector/size #8-3 0.020 4.86
variable

Is Fhe same c.lty a.s t(’)ur 48-4 0.93
primary destination’s

Is Fhe same c.lty as stlbtour 485 0.96 725
primary destination’s

Size variable: #Offices - 1.00 -
#Observations 439

Initial likelihood -2,010.59

Final likelihood -1,623.21

Adjusted rho squared 0.190

The coefficient of detour distance is found significant and has the expected sign from the results

(Variable #8-1). Some other interesting finding includes that non-primary trips seem to tend to go
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to cities the same as the subtour primary destination but not the tour primary destination (Variables
#8-4 and #8-5), suggesting that non-primary subtour trips generally are shorter trips compared to

the primary one.

5.3.9 Intermediate Trip Generation Level

This level generates intermediate trips for each tour. Two categories: intermediate trips before and
after the primary destination are modeled separately. The stop-and-go process used in Subtour
Generation Model is also adopted here. The definition and availability of the alternatives are

summarized below:

e Alternative definition®: to generate a work-purpose intermediate trip; to generate an other-

purpose intermediate trip; to quit.

e Alternative availability: intermediate trip generation are available to who the occurrence of

stop with corresponding activity purpose is predicted true in Day Activity Pattern Model.

Those who are predicted to make stops but are observed to make no intermediate stop, (i.e., chose

to make subtours instead) are included in the estimation dataset as a quit choice.

Find below Figure 5-10 for a summary of the observed number of intermediate trips by each tour,
Figure 5-11 for the observed distribution of intermediate trip generation choice outcomes, and

Tables 5-27 to 5-28 for the estimation results.

Effects from time window pressure are also observed in the intermediate trip generation: the longer
its home-based tour lasts, the more possibility for the individual to make work- and other-purpose
intermediate trips before the primary destination (Variable #9-4) as well as other-purpose
intermediate trip after the primary destination. But this is not the case for work-purpose

intermediate trips (Variable #9-18), which could be explained by an unwillingness to perform any

¢ Education-purpose intermediate trips are not included as an alternative for simplicity, though observed (Figure 5-11).
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other work-related activities when leaving for home.
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Figure 5-10. Observed Intermediate Trips Generation Outcome Count Distribution.
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Figure 5-11. Observed Number of Intermediate Trips Count Distribution.
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Table 5-27. Estimation Results of Intermediate Trips Generation (Before Primary Destination) Model.

Generate Work

Generate Other

Variable Variable# Quit intermediate trip  intermediate trip
- - Coef. Tval. Coef. Tval.
Alternative-specific constant #9-1 -243 -7.48 -1.33 -13.86
Number of home-based tours remained #9-2 -0.53 -1.72 -0.15 -2.59
z(irsr:)ance between primary destination and home 493 0018 214 00070 213
;i(;nr:edtirfifs;eirrlncii )between departure home and back 49-4 015 513 011 864
Time of day of the first half tour is Early #9-5 -1.32 -0.64 -3.96
Time of day of the first half tour is Midday #9-6 Base 1.33 5.61 0.62 8.09
Time of day of the first half tour is PM Peak #9-7 alternat -0.04 024 1.86
Time of day of the first half tour is Late #9-8 ve -0.07 -0.83 -2.71
Full-time worker or board member #9-9 -0.29 -1.55
Number of intermediate trips have been done #9-10 0.69 -0.58 -11.77
Its home-based tour is not primary tour #9-11 -0.88 -0.44 -5.31
Its home-based tour has subtour #9-12 -245 -10.24 -0.80 -6.71
Its home-based tour is of work purpose #9-13 Not applicable -0.86 -9.38
Its home-based tour is of education purpose #9-14 Not applicable -2.60 -9.60
#Observations 10,712 Initial likelihood 7,590.37
Adjusted rho squared 0.274 Final likelihood -5,485.47

Table 5-28. Estimation Results of Intermediate Trips Generation (After Primary Destination) Model.

. Generate Work Generate Other

Variable Xariable Quit intermediate trip intermediate trip

- - Coef. Tval. Coef. Tval.
Alternative-specific constant #9-15 1.00 2.51 1.13
Number of home-based tours remained #9-16 -0.70 -4.00 -0.76  -15.38
Distance between primary destination and home (km)  #9-17 0.023 313 0.013 459
Ei(;nr:e(:irﬁ)esrzr:‘ci:) between departure home and back 4918 0074 227 159
Time of day of the last half tour is Early #9-19 4.46 4.41 0.09
Time of day of the last half tour is Midday #9-20 Base 0.68 046 212
Time of day of the last half tour is PM Peak #9-21 igfi:/ -0.89 -1.97 -1.34
Time of day of the last half tour is Late #9-22 e -2.65 -4.51 -089 -384
Full-time worker or board member #9-23 0.49 2.97 023 424
Number of intermediate trips have been done #9-24 -1.28 -11.63 -1.61  -42.62
Its home-based tour is not primary tour #9-25 -1.74 -5.68 -0.79  -11.00
Its home-based tour has subtour #9-26 -2.57 -10.91 -1.14 -12.46
Its home-based tour is of work purpose #9-27 Not applicable 0.64 9.07
Its home-based tour is of education purpose #9-28 Not applicable 0.55 5.03
#Observations 14,198 Initial likelihood -10,100.16
Adjusted rho squared 0.214 Final likelihood -7,910.00
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5.3.10 Destination of Intermediate Trips Level

This level of the model determines the destinations of the intermediate trips that are just generated
from the previous level of models. Its design is very similar to Destination of Non-Primary Subtour
Trips Level as the concept of “detour distance” is as well applied as the travel impedance variable (in

this case, is the detour distance compared to the home and the primary destination).

The definition and availability of the alternatives are summarized below:

e Alternative definition: mesh cells from a 100-mesh-cell set that are sampled out of the total

2611 meshes in Activity System Mesh Dataset.

e Alternative availability: all considered available.

Destination alternative sampling is applied with the same method introduced in Tour Mode and
Destination Model, and so do the correction terms. Find below Table 5-29 for the estimation results

where the two categories (before and after the primary destination) are separately estimated.

Table 5-29. Estimation Results of Destination of Intermediate Trip Model.

Before Primary Destination After Primary Destination
Variable
Variable#  Coef. Tvalue Variable# Coef. Tvalue

Detour distance (km) #10-1 -0.48 -86.82 #10-6 -0.53 -127.73
#Employees of tertiary ., 0031 1283  #107 0031 19.80
sector/size variable
#Employees of
primary and . #10-3 0023 -3.75  #108 0018  -4.67
secondary sector/size
variable
Is the same city as

B #10-4 0.58 9.01 #10-9 0.63 15.14
tour home’s
Is the same cityas 1 064 #1010 011  -2.57
primary destination’s
Size variable: #Offices - 1.00 - - 1.00 -
#Observations 2,534 6,020
Initial likelihood -11,234.4 -27,690.29
Final likelihood -7,859.12 -19,205.75
Adjusted rho squared  0.300 0.306

Detour distance coefficients are found negative in both models as expected. One interesting finding

is that the number of employees in the primary and secondary sectors has a negative influence on
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intermediate trip destination choice, both before and after the primary destination. This can be
explained by that intermediate trip are mostly related to other-purpose activities (Figure 5-11) such
as shopping and leisure where the number of employees in the primary and secondary sectors is

low.

54 Model Simulation

After finishing the estimation of the DAS models, some logic to generate the “Time-specific OD pairs”
(Figure 3-1) were designed. Instead of the classic sample enumeration method which enumerates
all possible combinations of model outcomes and multiplies fractional probabilities in multi-
dimensional arrays, stochastic simulation is adopted that applies the probabilities in Monte Carlo
method to predict a single set of tours, destinations and modes, and other travel attributes for each
individual in the sample. Despite suffering from random sampling error, the stochastic simulation is
argued to be advantageous as it allows a greater level of output details which resembles a travel
diary better (Bradley et al., 1999). The basic structure of the simulation is described below in Table
5-30, where attributes recording and updating are not listed for readability. The whole simulation

process is run with the language of R (R Core Team, 2021).

It is noted that certain procedures (Steps 3, 7, 10, 32, and 33) have been introduced and
implemented in attempting to have a more realistic vehicle using patterns among the households.
Household vehicle ownership is explicitly controlled so that intra-household car sharing (but not
ridesharing) is captured through these steps, which are detailed below. These steps are especially
important in modeling AVs in the next chapter (Section 6.1) for reflecting better on the feature of

AVs and for generating zero-occupancy trips (empty trips).

In Step 3, each household is defined as “vehicle sufficient” or "vehicle insufficient” by checking
whether the vehicle ownership of the household is greater or equal to the number of household

members excluding those who do not hold a driving license. For each person who holds a driving
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license in a vehicle insufficient household, the vehicles are assigned in the order of employment
status and age. For example, in a one-income nuclear family owning only one car, we assume the
worker would have the priority in using the vehicle; while in a dual-income nuclear family with one
car, the priority would be assigned to the older worker. The vehicle (as a driver) availability is

assumed as false for those who have no vehicle assigned at this step.

In Step 7, the vehicle (as a driver) availability of each household is updated. After simulating Day
Activity Pattern model, information of who is planning to stay at home all day (i.e., “zero-trippers”,
“000-000” in Table 5-5) is counted and the vehicles that have been assigned to these people are
reallocated to other members in their respective household. For those who are assigned a vehicle,

their vehicle (as a driver) availability is assumed as true.

In Step 10, whole tour data are separated into two groups, 1) those who are car available or hold no
driving license; 2) those who are not car available but hold a driving license; and are simulated
sequentially. This is because the car availability of the second group should be dependent upon the
simulation result of the first one, that is, the tours/people in the second group (Group 2) still have
opportunities to use HV during the time of day when any HV has been returned home with its former

user as they finished (one of) his or her tour(s).

After the simulation of Group 1, in Steps 32 and 33, the vehicle usage patterns are summarized for
Group 1 people to collect the information of tour time of day (and thus idle time of day) and the user
ID for each vehicle. The idle time of day of each vehicle is then matched with the time of day (decided
in Step 9) of each tour of people in Group 2. Those who match a tour within the same household of
the vehicle user will be reassigned (as only intra-household sharing is considered), as such the tour

is considered a car available in its subsequent model simulations.
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Table 5-30. Simulation Procedures of DAS Model.

Begin.

4.

v

0.

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.
22.
23.

Read person data with demographic variables, model coefficients, mesh land use data, mesh
LOS matrices.

Pre-calculate logsum for each individual.

Car Availability Related: define whether each household is “vehicle sufficient” and based on
which define the mode availability for car driver (see Section 5.4 for detail).

{for person data}

Apply Daily Activity Pattern Model: Generate individual-specific probabilities and randomly
draw one of the alternatives as the simulation outcome (same for all the “Apply”, omitted
below).

Apply Exact Number of Tours Model for 3 purposes.

For whom without precise outcome (e.g., “3 or more tours”), randomly sample one based on
the observed distributions.

Car Availability Related: count the number of zero-trippers of each household and based on
which update the mode availability for car driver (see Section 5.4 for detail).

Generate simulated tour data by expanding the person data with the simulated number of
tours.

{for tour data}

Apply Tour Time of Day Model for 3 purposes.

a. Remove conflicted time of day alternatives each time for the simulation of next tour
within the same person.

Car Availability Related: separate the whole tour data into two groups, 1) those who are car

available or hold no driving license; 2) those who are not car available but hold driving

license.

Apply Tour Mode and Destination model for 3 purposes for Group 1.

a. Sample the destination alternatives.

b. Use travel impedance data corresponding to the simulated time of day.

Predict destination coordinates by randomly sampling from the predicted destination mesh

cell for Group 1.

Predict specific departure and back home time point inside the predicted time of day by

randomly sampling for Group 1.

a. Solve time conflicts across the tours by repeatedly sampling.

Apply Subtour Generation Model for Group 1.

Generate subtour data (Group 1) by expanding the tour data (Group 1) with the simulated

number of subtours.

{for subtour data (Group 1)}

Apply Number of Subtour Trips Model.

For whom without precise outcome (e.g., “3 or more subtours”), randomly sample one based

on the observed distributions.

Apply Subtour Mode and Destination Model.

a. Those who did not choose car (driver) as primary mode of the tour cannot choose car
(driver) for the subtour mode choice.

Predict destination coordinates by randomly sampling from the predicted destination mesh

cell.

Generate subtour trip data (Group 1) by expanding the subtour data (Group 1) with the

simulated number of subtour trips.

{for subtour trip data (Group 1)}

Predict time of day for subtour trips by randomly sampling from the observed distribution.
Apply Destination of Un-primary Subtour Trip Model.

Predict destination coordinates by randomly sampling from the predicted destination mesh
cell.
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Table 5-30. Continued.

{for tour data (Group 1)}

24. Divide the data to the departure home half-tour data and back home half-tour data.

25. Apply Intermediate Trip Generation Model to the two half-tour data.

26. Generate intermediate trip data (Group 1) by expanding the half-tour data with the simulated
number of intermediate trips.

{for intermediate trip data (Group 1)}

27. Apply Destination of Intermediate Trip Model to the intermediate trip data.

28. Predict destination coordinates by randomly sampling from the predicted destination mesh
cell.

29. Combine tour data, subtour data, and intermediate trip data to trip data (Group 1).

{for trip data (Group 1)}

30. Predict specific trip start time inside the predicted time of day by randomly sampling.
a. Solve time conflicts across the trips by repeatedly sampling.

31. Assign attributes such as travel time and distance between the trips.

32. Car Availability Related: summarize tour & idle time of day for each vehicle.

{for tour data (Group 2)}

33. Car Availability Related: check whether the tour match the idle time of day that summarized
in previous step for tour 1. If so, assign car availability of the tour as true.

Simulate Step 11-31 for Group 2 data (Omitted).
End.

5.5 Model Validation

As mentioned above, efforts are also devoted to validating the estimation results to demonstrate
their reliability. Due to the lack of data, only internal validations are conducted. Internal validation
is defined following Parady et al. (2021) as the evaluation of the reproducibility of the model, that is,
the extent to which the model maintains its predictive accuracy in a different sample from the same
population. In lieu of a different sample, the holdout method is used, where the dataset is randomly
split into two, in this case at the household level (80 % estimation, 20 % validation). The validation
dataset was run through the stochastic simulation procedures with their demographics as the
inputs, and then the simulated results are compared to the observed ones. All the results are
averaged from 10 times repeated simulations to mitigate random sampling error. The validation
results are shown in Figures 5-12 to 5-28, results of some trip-level models are not conducted for

simplicity.
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According to the internal validation results, the estimated DAS model for Gunma generally
demonstrates good predictive accuracy. However, the results of several models show noticeable

discrepancies that might lead to biased forecasting, they are summarized below.
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Figure 5-12. Validation Results of Day Activity Patterns.
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Figure 5-13. Validation Results of Number of Work Tours & of Education-purpose Tours.
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Figure 5-14. Validation Results of Number of Other-purpose Tours & of All Tours.
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Figure 5-15. Validation Results of Time of Day of Work-purpose Tours.
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Figure 5-16. Validation Results of Time of Day of Education-purpose Tours.
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Figure 5-17. Validation Results Time of Day of Other-purpose Tours.
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Figure 5-18. Validation Results of Time of Day of All Tours.
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Figure 5-19. Validation Results of Travel Mode of Work-purpose Tours & Education-purpose Tours.
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Figure 5-20. Validation Results of Travel Mode of Other-purpose Tours & All Tours.
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Figure 5-21. Validation Results of Travel Distance (km) of Work-purpose Tours.
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Figure 5-22. Validation Results of Travel Distance (km) of Education-purpose Tours.
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Figure 5-23. Validation Results of Travel Distance (km) of Other-purpose Tours.
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Figure 5-24. Validation Results of Travel Distance (km) of All Tours.
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Figure 5-25. Validation Results of Number of Work-purpose & Other-purpose Subtours.

154



80% Data Group
Observed
60% . Predicted

40%

Share

20%

0% . I .

bicycle car_driver  car_passen walk

Mode of Subtours

Figure 5-26. Validation Results of Subtour Modes.
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Figure 5-27. Validation Results of Number of Intermediate Trips Before Primary Destination.
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Figure 5-28. Validation Results of Number of Intermediate Trips After Primary Destination.
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First, regarding travel modes, there founds a tendency to over-predict the share of passengers in
both home-based tours (Figures 5-19 and 5-20) and subtours (Figure 5-26). An obvious reason
behind the discrepancy is that the mode availability for passenger mode adopted in this DAS model
of Gunma is quite naive: simply all the trip makers whose household own cars are considered
available for being a vehicle passenger. It is more realistic to consider the trip matching issues in the
mode choice, which means one must be matched with another individual who is car available at the
time to chauffeur him or her to make the car passenger mode alternative available. This complex
information is, unfortunately, not explicitly reported in the Gunma PT Survey so this dissertation
decides to not incorporate this feature. Therefore, the over-predicting issue here has to be left as a

limitation of this study.

Second, the distances between the home and primary activity destination are found, as expected,
to have the most value discrepancies among the whole DAS model system. This is a common issue
because not only the largest choice set in this decision but also many factors such as spatial
resolution issues (e.g., Modifiable Areal Unit Problem) are playing roles in the decision making that
would introduce more sources of error. Specifically in this research, the mode-destination models
(Figures 5-21; 5-22; 5-23; and 5-24) are found to under-predict the frequency in the interval less than
2km, while over-predict the intervals between 4km and 16km. It is speculated here that the
discrepancies are caused by the travel impedance retrieval method and the spatial unit of Tkm mesh
cells used in this research. The transport supply model generates the cell-to-cell car-based travel
time and distance that are measured with mesh cell centroids, which means that the accuracy of the
impedance data can be quite low when the demands are facing destination alternatives that locate
just in their vicinities or the same mesh cell as the origin. In the case of the same mesh cell with the
origin, travel time data are randomly sampled from a Triangle Distribution between 30 seconds and
210 seconds. This should be left as one of the limitations. Nevertheless, the discrepancies seem to
offset each other to some extent: the average value of the distance between the home and primary

activity destination from the simulated results is 6,357m, a value slightly smaller than the observed
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6,412m.

In summary, the estimated model shows sufficient reproducibility and is adequate for forecasting.
However, cautions are required to attempt to evaluate the metrics for each activity purpose

separately, and the spatial distribution of travel distance.
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CHAPTER 6 TRANSPORT MODEL  APPLICATIONS AND

EVALUATIONS

This chapter introduces the procedures to incorporate AVs into the demand and supply models. The
implications of the AV introduction are then evaluated through conducting scenario analysis, where

one base scenario and four AV scenarios are involved.

6.1  Scenario Settings and Assumptions about Automated Vehicles

As discussed in the literature review of AVs in Section 2.3, there is still much uncertainty about the
characteristics AVs will possess. To reflect the potential variation in the characteristics, scenario
analysis has been extensively used in the existing literature by assuming a combination of different

characteristics.

In this study, the forecast year for the scenario analysis is 2040, a time point assumed for the
prevalence of AVs (Litman, 2021). To reiterate, predicting the specific time of AV prevalence is

beyond the scope of this dissertation (Section 1.3).

A scenario without AVs but only population changes is included as the benchmark case, hereafter
called Base Scenario. A ratio of 82.45% to the current population in Gunma Prefecture and Ashikaga
City is assumed for 2040 based on the predictions made by the National Institute of Population and
Social Security Research of Japan (NIPSSR, 2018). The demographic patterns across the population

are assumed the same as of 2015, which means no household transition model was incorporated.

Four AV scenarios are defined with different levels of value of travel time and levels of road capacity
assumed (Table 6-1). Scenario 1 is the most conservative in terms of AV characteristics, where values
of travel time are set as 75% and 85% compared to HV for commuting and other-purpose travels,
respectively. No AV-induced benefit in road capacity is assumed. Scenario 2 also assumes no change
in road capacity, but the decreased levels of values of travel time are doubled. Scenario 3 and

Scenario 4 apply the same value of travel time patterns as Scenario 1 and 2, respectively, but
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assumes a 20 % increase in road capacity for the AVs. The values of travel time for commuting
purposes (i.e., work and education) and other purpose are differentiated according to the findings

of the existing literature from SP surveys (Kolarova et al., 2019).

Table 6-1. Summary of Scenario Settings.

Value of travel time for AV
compared to HV (drivers)

Scenario Population PAV PAV or HV Road Capacity
change  ownership availability Commuting- Other-purpose for AVs of HVs
purpose tours  tours and
and subtours subtours
Requiring
driving license &
Base ) depending on ) i )
Scenario vehicle
ownership
(Section 5.4)
82.45% to
Scenario T the current 75% 85% 1.0
Scenario 2 The same as Dependlng N 500% 70% 1.0
of HV vehicle
. ownership ownership o 0
Scenario 3 patterns (Section 6.1) 75% 85% 1.2
Scenario 4 50% 70% 1.2

The different levels of AV characteristics are adopted for two purposes. For Scenarios 1 and 3, the
values of travel time level (around 20% decrease) are basically set in line with the findings of the
existing literature (Section 2.3), hence these two scenarios are intentionally conceived for
evaluations in relatively “realistic” futures in a sense of following the current academic findings.
While Scenarios 2 and 4, where the decreased levels of value of travel time are more optimistically

set compared to their counterparts, are proposed as relatively “extreme” cases.

The level of road capacity benefit might be associated with extra uncertainties from specific vehicle
running patterns (e.g., in the platoon) and technology (e.g., Connected Vehicles), as well as for the
concern of passenger comfort (e.g., Le Vine et al., 2015). Therefore, only a single moderate level
(20%) of improvement (Shladover et al.,, 2012) is applied to Scenarios 3 and 4. From a perspective of
policy making, it is also possible that one considers the different levels of road capacity benefit as

leverage for AV introduction. Compared to the value of travel time, which is somewhat “subjective”
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and hard to control, road capacity benefits could be more flexible as being a more “objective”
concept. Such a perspective will be discussed in the subsequent contents briefly (Sections 8-2 & 8-

4).

For all the AV scenarios, the human-driven vehicles currently owned by households are assumed to
switch to PAVs with the same ownership level, and all the members in these households are
assumed to have access to an available/idle PAV irrespective of their driving license status. Certain

rules are proposed below to define the availability/idleness of AVs.

The way to define vehicle availability of PAVs is different from those of HVs (Section 5.4). The main
PAV feature that they can drive themselves is assumed to impact the vehicle usage patterns in two
aspects: 1) PAVs require no driving license anymore; 2) PAVs can move back home without any
occupant to serve another household member. Therefore, those people belonging to a “vehicle

insufficient” household under the PAV case should have two opportunities to access a PAV when:

e Any PAV has been returned home with its former user (inside the same household). As did

in the HV simulation.

e Any PAV has returned home by itself during idle time when its (primary) user is not using

(e.g., staying in the office from AM Peak — PM Peak).

The simulation steps (Table 5-30) related to car availability are modified accordingly:

e In the steps (Steps 3, 7, and 10 in Table 5-30) defining “vehicle sufficient” household, the

members holding no driving license are not counted anymore.

e In Steps 32 and 33, the occupied times of day in trip level (instead of the time of day of the
whole tour) are summarized. The idle time now expands to those time of day not occupied
by the primary user. The tours in Group 2 data are matched with the idle time time-of-day

in order to decide their PAV availabilities.

For example, consider the following household owning only one PAV (Table 6-2):
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Table 6-2. Hypothetical Activity Schedule for PAV Mode Availability Explanation.

Person ID by Tour ID by Trip ID by Trip Time of Trio Purpose PAV Tour Mode
Household Person Tour Day pFurp Availability Choice
1 1 1 AM Peak Work
True PAV
1 1 2 PM Peak Back home
2 1 1 Midday Shopping ) ,
2 1 2 Midday Back home .
2 2 1 Late Shopping ,
2 2 2 Late Back home ’

In the HV case, the second tour of Person 2 should have access to HV as the vehicle has been
returned home by Person 1, while the first tour is not car available. Nonetheless, in the PAV case, the
first tour of Person 2 is also considered car (PAV) available as PAV could drive itself home after the

first trip of Person 1.

These trips AV drive itself without an occupant for intra-household sharing, are called zero-
occupancy trips (or empty trips), which are expected to add extra vehicle distance traveled to the

whole transport system.

Another source of zero-occupancy trips is that, in some rare cases that a trip maker chooses to use
PAV for a subtour but did not use PAV for its corresponding home-based tour (car availability for the
subtour would be false in HV case if no HV was used for the tour). In this case, we assume PAV would

drive itself from home to the primary destination of the tour and drive back after serving subtour.

6.2 Model Simulation Results of Base Scenario as Benchmark

Base Scenario is presented firstly to illustrate the impacts of population decrease. The initial travel
demand in the base scenario is obtained by randomly selecting 82.45% of the households from the
original effective PT data sample of 16,425 households. The resulting dataset contains 13,542

households and 27,350 persons.
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Randomly select

82.5% households N[odified ~ Iravelsupply Travel Travel demand 3040 Base
2015 PT Data ———» model: impedance data model:
2015 PT Data MATSim p DAS Data

Figure 6-1. Simulation Running Flow for Generating 2040 Base Data.

One iteration between the MATSim and DAS is performed to reflect the change in travel impedance
following the decreased population (Figure 6-1). The 13,542 household dataset is hereafter called

2040 Base Data.

The travel-related simulation results for Base Scenario are shown below in Table 6-3 with a
comparison with the effective PT data sample in 2015 that is used for the DAS model building. Two
conclusions can be drawn from this comparison: first, AM Peak time average speed increased by
4.0% suggesting less congestion in Base Scenario; this is intuitive since the existing road
infrastructure would be enjoyed by less population. Second, despite the better level of service, the
differences in trip making metrics between the PT data and the 2040 Base data were so small that
are probably compounded with simulation random errors, especially for the average travel

frequency measures. Care must be taken in interpreting these measures.

Table 6-3. Comparison between PT Data Sample and Simulated Base Data for 2040.

Average speed in city

Share of Persons Made Average #Tours per
travel erson centers (among DAA mesh
#Hous P cells, see Sub-section 3.4.1)

DAt eholds Residing in DAA Residing in

Overall d Overall DAA Ih AM Peak 'T‘ Early

time time
Yes No Yes No

FzTo 12;’“’ 16425 817%  827%  81.1% 098 100 096  3228km/h  39.15km/h
2040
Base 13,542 81.7% 83.2% 80.7% 0.97 1.01 0.95 33.57 km/h 39.26 km/h
Data
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6.3 Model Simulation Results of Automated Vehicle Scenarios

AV scenarios (Table 6-1) are simulated with the DAS-MATSim loop with the 2040 Base Data as the

initial travel demand. The running flow process and terms for the iterations are shown in Figure 6-2.

apply Iteration O:

settings of .
2040 Base  avs Modified 2040 Travel supply model: Travel
Data Base Data MATSim impedance data
a0
ade™
1rav® " pAS
Iteration 1:
Updated Travel supply model: Updated Travel
demand data MATSim impedance data
mod®’
aen?®
pras® TS
Iteration 2:
Updated

demand data

Figure 6-2. Simulation Running Flow for Scenarios with Automated Vehicles.

Records of the total distance traveled of each iteration and their changing rates are presented in
Table 6-4. We assumed as convergence criteria three-iteration moving average smaller than 0.10%.
Based on that criterion, convergence is reached in Iterations 6, 4, 5, and 5 for the four AV scenarios,

respectively.

According to the results in Table 6-4, the comparisons between Iteration 0 and the final Iteration for
the AV scenarios indicate the necessity to exercise the transport supply-demand loop. The statistics
in equilibrium do vary compared to a one-time model exercise, let alone in the case of no interaction
between supply and demand considered. For example, the trip distances in the final iterations
decrease by up to around three percent from Iteration 0, except for Scenario 3 where the
combination of moderate PAV settings and road capacity benefit probably played a role. For other
scenarios than Scenario 3, the results suggest the adaptations from the trip makers for travel

congestions resulted from the increased distance.
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Table 6-4. Simulated Total Trip Distance by Iteration.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Total Total Total Total

I . distance % change  distance % change  distance % change  distance % change

teration . . . . R . .

# traveled moving traveledin  moving traveledin  moving traveledin  moving
in 100km  average 100km (%  average 100km (%  average 100km (%  average
(% change) change) change) change)

Base 3,994 - 3,994 - 3,994 - 3,994 -

0 5,081 ) 5,978 ) 5,080 i 5,978 )
(+27.21%) (+49.68%) (+27.40%) (+49.9%)

1 4,890 ) 5,761 ) 5,098 i 5,859 )
(-3.76%) (-3.64%) (+0.34%) (-2.00%)
4 784 7

2 206 +7.93% >78 +15.48% >086 +9.17% >88 +16.13%
(+0.34%) (+0.41%) (-0.23%) (+0.49%)
4 5,746 ,1 5873

3 966 -0.73% -1.30% >103 +0.14% -0.58%
(+1.22%) (-0.66%) (+0.32%) (-0.24%)
4,928 5,759 5,076 5,883

4 +0.26% -0.01% -0.14% +0.14%
(-0.77%) (+0.23%) (-0.52%) (+0.16%)
4,932 7

5 93 +0.18% - - >,088 +0.01% >89 +0.05%
(+0.08%) (-0.23%) (+0.24%)
4,957

6 95 -0.06% - - - - -
(+0.51%)

o )

% change of final +24.1% +44.2% +27.6% +47.9%

iteration against Base

% change offinal

iteration against -2.4% -3.7% +0.1% -1.4%

Iteration 0

A summary of the simulation results is shown in Table 6-5.

Some insights into the AV implications can be gained from the simulation results: in general, the

increase of the considered indicators' values is higher in Scenarios 2 and 4 than in Scenarios 1 and 3,

which is as expected because of a more optimistic AV value of travel time decrease. While the

difference among the scenarios with only road capacity changes seems much more moderate.

Specific analyses are presented below.
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Table 6-5. Simulation Results Summary of Transport Evaluators.

Base Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
Measures Value Value Value Value
Value (% change (% change (% change (% change
against base) against base) against base) against base)
#Persons who conducted at 22333 22,289 22,360 22,317 22,426
least one tour ! (+0.2%) (+0.1%) (-0.1%) (+0.4%)
2 2 2 2
#Tours 26,566 6,560 6,850 6,685 6,805
(-0.02%) (+1.1%) (+0.4%) (+0.9%)
7,792 4 152 2
#Trips 64,642 67,79 68,408 68,15 68,266
(+4.9%) (+5.8%) (+5.4%) (+5.6%)
PAVorCar 21 79, 86.4% 89.2% 87.0% 89.3%
(driver)
Bicycle 7.5% 4.1% 3.2% 3.8% 3.1%
Mode share
(by trips)
Walk 9.9% 4.9% 3.9% 4.7% 3.9%
Car
10.9% 4.6% 3.6% 4.4% 3.6%
(passenger)
PAV or Car 3401 4,679 5,541 4,815 5,676
(driver) ! (+37.5%) (+62.9%) (+41.6%) (+66.9%)
P Bicycle 136 74 61 74 >8
Total distance y (-45.6%) (-55.1%) (-45.6%) (-57.3%)
traveled
(-45.6%) (-58.2%) (-49.4%) (-57.0%)
Car 372 161 124 159 129
(passenger) (-56.7%) (-66.7%) (-57.3%) (-65.3%)
PAV or Car 7339 7,987 9,076 8,121 9,307
(driver) ! (+8.8%) (+23.7%) (+10.7%) (+26.8%)
Bicycle 2792 2,681 2,756 2,813 2,746
Average trip (-40%) (‘1 3%) (+08%) (‘1 6%)
distance (m)
Walk 1,240 1,304 1,230 1,250 1,235
(+5.2%) (-0.8%) (+0.8%) (-0.4%)
Car 5587 5134 5,028 5,246 5,288
(passenger) ! (+2.9%) (-4.9%) (-0.8%) (+0.02%)
Average speed among DAA
mesh cells in AM Peak time 33.57 31 :j 31 'Os 33'0; 3§:§
(km/h) (-5.8%) (-7.5%) (-1.5%) (-3.6%)
%PAV Trips by persons ) o o o o
unable to drive of total trips 10.4% 10.8% 10.7% 10.5%
%Tour that PAV or Car
(driver) availability
- 1.1% 10.8% 10.4% 10.7% 10.3%
reassigned through Intra-
household sharing
%PAV zer.o—occupancy trips ) 4.8% 2.8% 2.9% 2.8%
of total trips
%Total distance traveled
attributed to PAV zero- - 5.4% 5.3% 5.6% 5.6%

occupancy trips
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We first observed few changes in the number of persons who conducted at least one tour. The
sensitivity of daily patterns seems relatively low for the applied DAS model, this will be explained
more in the following (Figure 6-3). The increase of the scenarios with the more optimistic value of

travel time settings (i.e., Scenario 2 and 4) is found to be larger compared to the other scenarios.

Regarding the number of trips, we found that PAV zero-occupancy trips account mostly for the
increase. According to the second last row of Table 6-5, there are around 5% of the total trips are run
by PAVs without occupants, all in their way to serve a certain member of the household. The ratios
of PAV zero-occupancy trips are basically the same among the AV Scenarios, simply because AV
features mentioned in Table 6-1 have no impact on the intra-household vehicle sharing behavior in

this model system.

As for the modal share, as expected, PAV dominates all scenarios, taking more than 86% of all trips.
An interesting finding is that among the PAV trips, 10.4%, 10.8%, 10.7%, and 10.5% in each AV
scenario are performed by those who cannot drive at the current time, which means that a majority

of the modal shifts can be attributed to the feature that AV requires no driving license anymore.

Total distances traveled show much larger changes than the number of tours and trips with 24.1%,
44.2%, 27.6%, and 47.9% overall increases (Table 6-4) estimated for Scenarios 1 to 4, respectively.
The benefits from road capacity improvement are smaller by around an order of magnitude than
the change in the value of travel time, similar to the findings by Auld et al. (2017). The increases in
total distance traveled by PAV or car driver modes range from 37.5% up to 66.9% (Table 6-5), which
are within the upper bounds of the results reported from the existing literature: 19.6% and 35.3%
increases in vehicle miles traveled were reported by Childress et al. (2015, a scenario with 30%
capacity increase and 35% perceived travel time benefit) and Auld et al. (2017, a scenario with 75%

AV penetration, 50% value of travel time decrease, and no road capacity benefit), respectively.

We argue that the new PAV trips as a result of modal shifts and induced demand from those who

cannot drive contribute considerably to the observed increases in PAV distances traveled. For
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Scenario 1, the modal share of PAV increased from 71.7% to 86.4% with consequent decreases in
other modes. Childress et al. (2015), for example, found at most a 1.1% increase in modal share.
Regarding increases in trip distances, average trip distances increased by 8.8% in Scenario 1 and at
most 26.8% under the most optimistic Scenario 4. This is in line with findings from the literature,
where for example, Childress et al. (2015) found a 12.9% increase in average trip distances in the
scenario mentioned above. Less travel impedance allows people to be able to choose somewhere

more distant but with more activity facilities, including commuting.

Different geographical contexts and/or existing travel patterns (as compared to the contexts the
literature has focused on) should also account for the differences in total distances traveled. For
example, the average trip distance of 7.3km (Table 6-5) by car driver mode in Base Scenario is much

smaller than the two aforementioned literature in American contexts.

PAV zero-occupancy trips as well contribute to more than 5% of the total distance traveled. As a
result of PAV intra-household sharing, this is sometimes ignored by the existing literature, such as

in a previous study of this dissertation (Luo et al., 2022).

Atany rate, itis important to note that given the wide variety of models, data, and assumptions used
in the literature, straightforward comparisons are somewhat difficult and should be done with a
clear understanding of these limitations. On the other hand, given that the DAS model in this study
did not explicitly control for time budgets in the choice set definition, there is a risk of
overestimation of travel distances, in that some individuals may choose destinations that are so far
away that they reduce the available time for undertaking their next activities. Further analysis is

required to address this issue, such as incorporating an activity duration model in the system.

We also showed the results of average speed among the DAA mesh cells in Table 6-5 to evaluate the
impacts on traffic flow characteristics. With longer total distances traveled, the average speed in the
central area of Gunma is found reduced in all AV scenarios, as expected. The magnitude of changes

is found to deteriorate by around 2% in the scenarios with more optimistic values of travel time
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settings (e.g., -1.5% in Scenario 3 and -3.6% in Scenario 4), which causes longer total distance
traveled. However, the benefits from road capacity increased the average speeds by around 3 to 4%
(e.g., -3.6% in Scenario 4 compared to -7.5% in Scenario 2), suggesting the results were more

sensitive to changes in road capacity.

A comparison of daily pattern choice among the three scenarios is shown in Figure 6-3. It seems that
no substantial changes occur by and large. Presumably, the reason for this is that Day Activity
Pattern level of the DAS model set the logsum coefficients (which reflect the changes from AVs)
identical across patterns with the same purpose of tours, which is a convention in such types of

models to be estimated as an “informal” nested logit manner (Li, 2015).

101-101 Data Group
101-100 Base Scenario
101-001 Scenario 1
101-000 Scenario 2

100-101 Scenario 3
100-100

100-001
100-000
>, 011-001
E 011-000
010-010
010-001
010-000
001-001
001-000
000-000

Scenario 4

Pattern

0% 10% 20% 30%
Share

Figure 6-3. Comparisons of Simulation Results of Daily Pattern Choice.

Given the substantial increase in total distance traveled, vehicle emission implications can also be
expected to be considerable. We here provide a basic calculation of AV’s environmental impacts on
the basis of the model suggested by the National Institute for Land and Infrastructure Management

(Dohi et al., 2012) that has been regressed from observed data in the Japanese context:

169



A
EF=;+B><U+C><U2+D

Where EF is the emissions per kilometer released along with vehicle running, v is the average
running speed (km/h), A, B, C, and D are the regression parameters (Dohi et al., 2012) varying with

the emission types and other contexts.

By assuming the average speed among the DAA mesh cells in AM Peak time as the representative
values and a fleet of vehicles with the 2015 ratio of hybrid vehicles and ordinary internal combustion
engine vehicles (hybrid vehicles account for 7.2% of the fleet as of 2015; AIRIA, 2022), we show the

emission implication results for the scenarios in Table 6-6.

These results indicate substantial emission increases of all types. As expected, the increasing rates
are largely similar to the ones of total distance traveled, which is considered the major contributor
to the emission outcomes. Note, however, that in this calculation, specific patterns of vehicle
acceleration and deceleration, as well as cold starts and warm starts were not incorporated.
Nonetheless, we believe these results could provide a basic image and some caveats for the future
AV introduction regarding the environmental impacts, which is difficult to be measured even in

some composite indicators such as accessibility that are to be discussed in the next section.

Table 6-6. Environmental Impacts of AVs.

Base . Scenario 1 Scenario 2 Scenario 3 Scenario 4
Scenario
Environmental Impact (kg) Value Value Value Value
Value (% change (% change (% change (% change
against base) against base) against base) against base)
. 62,556.7 53,659.5 ,827.
co, 418280 53,383.5 62,827.3
(+27.6%) (+49.6%) (+28.3%) (+50.2%)
335 284
NO, 220 28.5 334
(+29.5%) (+52.3%) (+29.1%) (+51.8%)
SPM (Suspended 14 1.7 20 1.8 2.1
Particulate Matter) ’ (+21.4%) (+42.9%) (+28.6%) (+50.0%)
403.7 479.8 391.2 466.4
co 301.1
(+34.1%) (+59.3%) (+29.9%) (+54.9%)
2.5 29 2.5 2.9
SO, 1.9
(+31.6%) (+52.6%) (+31.6%) (+52.6%)
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It is important to note that as the Japanese government pushes for Well-to-Wheel Zero Emissions
automobile transport through the wide adoption of hybrid, electric, and hydrogen vehicles (METI,
2018), the negative environmental implications of PAVs are expected to be partially mitigated,

however, a detailed analysis of these changes is beyond the scope of this article.

6.4  Activity-based Accessibility Analysis

For the AV Scenarios, individual specific Activity-based Accessibility (ABA, see Sub-section 3.2.2) is
then computed to offer a more comprehensive measure for the AV implications in transport. The

ABA for individual nis formulated as:
ABA, =In Z eVdrn |+ C
dpeCy

Where dp is the daily activity pattern in the pattern choice set Cy,, V,, the systematic component
of utility of dp for n, and C the constant represents the absolute value of utility in that MNL

specification.

Normalization is done following Dong et al. (2006) and Nahmias-Biran et al. (2021) to make ABA

satisfy both Level Condition and Scale Condition as:

ABAn _ ABAnoriginal

ABAnnormallzed — -
nt

Where a,,; is the scaling factor that approximates the marginal utility of travel time t by measuring

the change in ABA with 1 unit change of t (1min is adopted for the convenience of analysis):

ABA,At — ABA,
At

Ane =

And ABA,,°"94 s the original ABA before the change in policy or the transport system, which

means the normalized ABA value is calculated against Base Scenario in this dissertation. Note that
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since logsum from the Time of Day level is not incorporated in the applied DAS model, travel

impedance from AM Peak is used in the ABA calculation.

Based on this procedure, the travel-time-based normalized ABA can thus be interpreted as the
change in travel-time-based utility (utility-equivalent time) with the introduction of PAVs for each

individual under the scenario settings.

The change distributions of ABA under the four AV Scenarios across the whole demand sample are

shown in Figure 6-4, and descriptive statistics are shown in Table 6-7.
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Figure 6-4. Distribution of Activity-based Accessibility under AV Scenarios against Base.

Table 6-7. Summary to Activity-based Accessibility under AV Scenarios against Base.

Normalized ABA Descriptive summary

values against Base .. . _ Standard
Scenario (min) (95% confidence level) Median Min. Max. Deviation
Scenario 1 2.48 (+ 0.025) 2.26 -5.54 35.65 2.15
Scenario 2 3.32(+£0.033) 3.02 -2.46 40.24 2.79
Scenario 3 2.58 (+0.026) 2.36 -4.24 36.05 2.18
Scenario 4 3.41 (£ 0.034) 3.09 -2.91 40.81 2.85
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The ABA is found on average to increase by around 2 and 3 min, respectively, across the entire study
region in the four AV scenarios. Yet, the variance in ABA seems to be large across the demand sample
and the level of gain is highly dependent on each individual's demographic characteristics and
residence location. For example, according to Figure 6-4, there are a group of people negatively
affected by the prevalence of PAVs as their ABA being less than zero. By investigation, those who
found with negative ABA can be classified into three groups: the first being those whose households
have no access to an HV in original and by assumption are not PAV available, thus enjoying nothing
from PAV but suffering from the congestion (Table 6-5); the second being those who reside in the
relatively urban center area where most likely to bear more congestion effect induced by PAV for
lower road network level of service; the third being those who had access to HV but not to PAV as a

result of the changes in vehicle use priority rules in the household level (Sections 5.4 & 6.1)

As for other demographics, Figure 6-5 and Table 6-8 show the ABA changes under Scenario 4 by the

segment of employment status.
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Figure 6-5. Distribution of Activity-based Accessibility under Scenario 4 by Employment Status.
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Table 6-8. Summary to Activity-based Accessibility under Scenario 4 by Employment Status.

Descripti
Normalized ABA values escriptive summary

versus Base Scenario Mean

der S io 4 (min)  (95% confid Median Min Max. Standard

unaer >cenario min o confidence . . Deviation
level)

Employed people 4.25 (£ 0.042) 4.06 -2.91 40.81 2.97

Unemployed people 1.57 (+0.027) 1.54 -1.87 21.82 1.29

It suggests that employed people benefit more than the unemployed, which is intuitive as the utility
gains for the unemployed are limited to other-purpose tours. On the other hand, the employed

people combine their gains from multiple types of tours.

To evaluate the spatial pattern of changes in ABA more clearly while controlling for the effects of all
the covariates, we estimated ABA for a representative individual. Specifically, this representative
individual was replicated and assigned to reside on each mesh cell (one per cell), respectively, in the
resident’s mesh dataset, being the anchors for calculating ABA. A 39-year-old full-time male worker
who has no kid and has access to bicycle and car (HV and PAV depending on the scenario) is selected.
The ABA under Scenario 4 of the representative person across the study region is shown in Figures

6-6 and 6-7. Note that normalization was not conducted as we are examining the “same” individuals.

As expected, the absolute level of ABA (Figure 6-6) across the region indicates that urban centers
have higher travel accessibility compared to the outskirts. However, when looking at relative
changes (Figure 6-7), the ABA gains are higher in the suburbs and outskirts of the region. In other
words, it could be expected to have less difference in the sense of transport accessibility between
the urban centers and other areas in the time of AVs. This is one of the basic rationales of this
research to examine the change in residential locations with the prevalence of AVs (Luo et al., 2019;

Gelauff et al., 2019). The following chapters will investigate this issue in detail.
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Figure 6-6. Activity-based Accessibility of Representative Person under Scenario 4.
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CHAPTER 7 RESIDENTIAL LOCATION MODEL SPECIFICATION

This chapter focuses on the residential location model for long-term forecasting. Before presenting
the model specification and estimation results, land use data processing is first conducted to
prepare some necessary attributes besides those that have been used for the DAS model. Following

the estimation, a simple validation is also presented to demonstrate the reliability of the model.

7.1 Housing Stocks and Land Price Model

Although two types of land use datasets called Resident’s Mesh Dataset and Activity System Mesh
Dataset have been processed and prepared in the transport model calibrations (Sub-section 3.4.1),
there are some other attributes are considered necessary in modeling residential locations. Among
others, the number of housing stocks and land price per mesh cell are considered of more

significance as they represent measurements from the supply side in the urban residence market.

The number of housing stock data is currently not available in the Tertiary Mesh level in Japan’.
Hence, they must be approximated by allocating city-level data with other mesh-level attributes as
the weights. This research adopts the land use type area ratio by mesh cell from Land Use Mesh Data
(MLIT, 2018a) as well as Land Use Subdivided Mesh Data of Urban Area (MLIT, 2018b) to serve the
weight. The former gives information on the ratio of buildings per each mesh cell across Japan
without details, while the latter provides the ratio of buildings for the urban area within four
categories: area of buildings with more than 4 floors; area of buildings with less than 3 floors; area
of densely distributed buildings with less than 3 floors; and area of industrial buildings. We adopt an

empirical practice to calculate the weight of buildings for mesh cell m in the study region as:

Wm = abu”dinglow—floor +3 X% abuildinydensely—low—floor +2X% abuildinghigh—floor

7 An attempt to collect and aggregate parcel-level data, such as Zmap-TOWN Data from ZENRIN Co., Ltd.
(https://www.zenrin.co.jp/product/category/gis/basemap/zmaptown/index.html) has been made.
Unfortunately, the attributes of the building names (for speculating the type of the building) and the number of
floors (for speculating the dwelling density of the building) are missing to a great amount, hence it is decided to
not use them in this dissertation.
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Where, w,, is the weight of buildings for mesh cell m, a is the area of buildings of the specific
category just mentioned above, which are annotated in the subscript. The coefficients of each a are
identified through multiple empirical tests as a “practically good” combination in the sense of

matching the population distribution from the Japanese National Census 2015.

For those outside the urban area, where no data is available from Land Use Subdivided Mesh Data,
the weight of building is simply the area of buildings. This should make sense as we expect that the

density and floors do not vary so much in suburban or country areas as in urban areas.

Housing stock data at the city-level is obtained from the Housing and Land Census 2018 of Japan
(Statistics Bureau of Japan, 2018). The results of allocated housing stock by each mesh cell are shown
in Figure 7-1. Note that even the city-level data on housing stock is not complete, data from some
small cities are absent. For these cities, the city-level data are allocated from the prefecture-level

data by the sum of the weight of buildings (calculated above) for each city.

#housing stock
0-100
100 - 300
300 - 600
600 — 1,000
1,000 - 1,500
1,500 - 2,100
2,100 - 2,800
2,800 - 3,600
3,600 - 4,500

FAL

20 km
10 mi Leaflet | © OpenStreetMap contributors © CART

Figure 7-1. Approximated Housing Stock by Mesh Cell in Gunma PT Area.

Land price data are available from Land Value Publication Data (MLIT, 2016), a dataset containing
values for “standard sites” that are selected by the governments to guide the transactions in the
land market. The data for the year 2016 was used as it is the year the 2015 Gunma PT survey finished.
In total, land prices of 824 sites that locate inside Gunma and Ashikaga city are obtained and are

illustrated in Figure 7-2.
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Figure 7-2. Land Prices for the Standard Sites in Gunma PT Area.

To get the land price data at the mesh cell level, a simple Hedonic Model was developed and
estimated. The land price data of the Standard Sites are considered as the observed values which
are then spatially merged with the Resident’s Mesh Dataset (take the average price value if multiple

sites are found in one mesh cell).

The Hedonic Model of land price is structured in linear regression, based on 557 mesh cells with the
merged land price values. Its estimation results are shown in Table 7-1. For simplicity, spatial issues

such as spatial dependence and spatial heterogeneity are not considered.

Three logsum variables are added as independent variables in the Hedonic Model. They are
calculated from the Tour Mode and Destination Level of the DAS model (Sub-section 5.3.4) to
represent the tour-based transport accessibility for the specific mesh cell. Representative individual

demographics are assumed for the calculations of each tour purpose:

e Tour-based Logsum of work-purpose and other-purpose: 30-year-old males with both car
and bicycle available.
e Tour-based Logsum of education-purpose: 10-year-old female primary school students with

neither car nor bicycle available.

Plus, the tours with work- and education-purpose are assumed to be the primary tour, while other-
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purpose tours are not the case. Also, at least one trip stop is assumed to be made for the work-

purpose tour, yet the other two types have none.

Table 7-1. Estimation Results of Mesh Cell Level Land Price Hedonic Model.

Dependent variable: natural log of land price (JPY per meter squared)

Data Source Variable Coefficient T Value

- Intercept 7.83 27.52

Housing and Land

Census 2018 #Housing stock -0.64

(Processed)
Tour-based logsum of work-purpose 0.15 5.02

DAS model Tour-based logsum of education-purpose 0.043 6.91
Tour-based logsum of other-purpose 0.13 4,91
Is Takasaki City 0.30 6.37

Boundary Data in Is Maebashi City 0.21 4.37

Economic Census Is Ota City -0.34

Data 2016 Is Isesaki City -0.89
Is Kiryu City -0.11 -1.81
Ratio of agricultural use area -0.48 -3.80

Land Use Mesh Data Ratio of forest area -0.46
Ratio of freshwater use area -0.15

Land Use Subdivided

Mesh Data of Urban Ratio of industrial use area -0.58 -2.27

Area

#Count 557

Adjusted R squared 0.728

F statistic 1154

The high R squared shown in Figure 7-1 suggests a good performance in fitting the training data. As
result, a mesh cell being transport accessible for all three types of tour, and with fewer areas used
for either agricultural or industrial use are likely to have high land prices. Being in Takasaki or
Maebashi City is considered as a merit, but not so if the mesh cell belongs to Kiryu City, all else being

equal.

The predicted land price by each mesh cell based on the estimated Hedonic Model is presented in
Figure 7-3. The land price will be used in the residential location model as one of the land use
variables and to be a proxy for residence price. The failure to retrieve mesh cell level residence price

should be considered as one limitation of this study.
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Figure 7-3. Predicted Land Price by Mesh Cell in Gunma PT Area.

7.2 Model Specification and Estimation

This research follows the residential location model specification that was proposed by Ben-Akiva
and Bowman (1998) as an integrated model connected to an activity-based model system. The
residential model is specified as an MNL model at household level, where the observed component

of the utility of residential location /for household iis of two parts:
Vi = BX; + ady;

Where X; is the attributes of /, 4;); is Activity-based Accessibility value (Section 6.4): the expected
utility calculated from the Day Activity Schedule model, the top level of DAS model, of household i
given residential location /, and a, j are coefficients to be estimated. Specifically, three types of A;;

are included in this research:

wo ZWEWL'AWH
A%y = —w
i
A5, = ZSESiAsll
AU- _ ZuEUL-AuH
il Ui
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Where A%, A%, A%, are the average Activity-based Accessibility for workers, students, and
unemployed people in the household j, respectively. These three terms are pre-calculated and
estimated as three independent variables with corresponding coefficients . The average ABA term
of each person type would not be included in the utility function if that household has no member
with the specific person type. The ABA of each household member is normalized following the
calculations introduced in Section 6.4, the original ABA for individual n ABA,,°"9™% in this case

refers to the ABA of n given the current home location of n’s household.

This residential location choice model is conducted on the 1Tkm-mesh-cell level, the same as what
has been applied in the destination choice levels of the DAS model (e.g., Sub-section 5.3.4). The
choice alternatives for residential location are the 2,794 Tkm mesh cells in Resident’s Mesh Dataset
(Sub-section 3.4.1). For each household 50 alternatives are sampled from the whole mesh set with
Importance Sampling with Replacement (Ben-Akiva & Lerman, 1985), the observed alternative
would randomly replace one sampled alternative if it is not found in the alternative set. Only one
attribute, mesh cell level land price, is used as the sampling weight in this procedure. Two correction
terms concerning aggregated alternatives and alternative samplings are added (Sub-section 5.3.4):
the housing stocks of each mesh cell are used as the size variable; the natural log of the inverse of

the sampling probability is used to cancel out the bias in the alternative sampling.

The same estimation data sample that has been used in the DAS model (Section 5.3) is applied for
the residential model estimation. 13,140 households in the dataset are exogenously divided into
five market segments with similar sizes by the age of the household head and the number of
household members to accommodate the heterogeneity by demographics. Two levels of the age:
50 and 65, and one level of the number of household members: 3, are applied for the segmentation
following an assumption that these two household-level characteristics have effects on the
residential location patterns. For example, one could expect a two-member household with a
household head younger than 50 would consider differently (for example, tend to consider a more

“temporary” residence) than a three-member household with a household head older than 50 in
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terms of accessibility and other land use characteristics.

The estimation results, as shown in Table 7-2, demonstrate expected coefficient signs of household
average ABA and land price, which indicate that the trade-off between transportation and housing
cost is well captured. Besides that, all households are found to prefer a mesh cell with fewer
buildings, fewer farmlands, more forests, and fewer number no matter the job category, and is
governed by the two big cities in the study region, Takasaki and Maebashi, all else being equal. The
preferences also vary across different market segments: for example, those small-size households
with a senior head in age (Segment #4 and #5) do not take transport accessibility for students into
concern for their residential location choices. This makes sense as students in these two types of

households are usually absent.

The segmented models are checked if they outperform their corresponding pooled model by a Chi-

square test (Ben-Akiva & Lerman, 1985) of:

2
—2 LLPOOled_ LLg ~X(deGKg)_Kpooled

gEeG

Where LLy,01eq and LL, are the log likelihood with parameter coefficients from the pooled model
structure and the segmented model g, respectively. G is the total number of the market segment
used and Kpooreq, Kg, are the number of parameters in the pooled model and segmented model,
respectively. As result, the chi-square test score is calculated® as 3,554.36, a value higher than
XZ5,0.001 0f 80.08. Hence, we can reject the null hypothesis that the segmented models are no better

than the pooled one.

8 The estimation results for the pooled model are omitted here, its log likelihood is -37809.84.
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Table 7-2. Estimation Results of Residential Location Model.

Market

Segment#1 Segment#2 Segment#3 Segment#4 Segment#5
segments
Age of the head

6,50 6,50 50,100 50,65 65,100
of household® ( 1 ( ] ( ] ( ) [ ]
#H hol
ouse (:Od 3 or more lor2 3 ormore 1or2 lor2

members
Variable Coef. TVal. Coef. TVal. Coef. TVal. Coef. TVal. Coef. TVal
Householdaverage .. 700 (oo 5701 040 4524 043 4593 033 3465
ABA for workers
Householdaverage  .h o35 15 4636 0026 247 0.60 0.98
ABA for students ’ : ’ : : ’ : :
Household average
ABA for

017 1045 028 1143 024 1918 037 2356 061 4991
unemployed
people
Land price (10000 ;o\ ;147 074 -1389 -084 -1705 -082 -1557 -073  -16.73
JPY per km?)
Ratioofbuildings ;2 1080 121 .17184 056 567 -075 -7.34 -058  -6.90
use area
Ratio ofagricultural - ) oo ;556 177 845 092 -499 -125 -612 -085 -504
use area
Ratio of freshwater -0.06 115 031 1.91 098 041 266
area
::? offorestuse -, 334 070 313 118 643 116 578 141 876
Is Takasaki city 073 586 0038 042 391 030 251 064 657
Is Maebashi city 024 228 042 026 293 029 298 073 914
Is Ota city 073 -797 059 -667 -048 -590 -040 -458 013 182
Is Isesaki city 069 -739 061 -660 -054 626 -052 -561 -0.94
Is Kiryu city 037 -315 032 -267 024 254 035 -321 -1.56
#Employees of
Primary and 010 -1337 -0054 -930 -0065 -886 -0.067 -870 -0023 -4.55
Secondary Sector
#Employees of 0033 -908 0038 -11.87 -0047 -1142 0022 -697 -0048 -47.82
Tertiary Sector
Size variable: 100 - 100 - 100 - 100 - 100 -
Housing stock
#Observations 2,630 2,554 2,578 2,192 3,186
Initial likelihood ~ -9,477.81 -9,128.47 -9,407.29 -7,953.38 -11,534.37
Final likelihood -6,406.43 -6,142.27 -7,586.59 -6,335.93 -9,561.44
Adjusted rho 0322 0325 0.192 0.201 0.170
squared

° The first respondent for each household in the PT survey, called “f# 3" in Japanese.
9 Household members with ages less than six are counted, but not included in logsum calculation.
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7.3  Model Validation

Validation of the residential location model is also performed to prove its reliability. The validation
sample data, as used in Section 5.4, with a 20% random sample of the effective 2015 PT data are

used for the purpose.

The first type of indicator used for the validation is network distance to the closest center area, to
represent the feature of the residence pattern in a polycentric area like Gunma. The concepts of
Urban Function Attraction Area (UFAA) and Dwelling Attraction Area (DAA) introduced in Sub-
section 3.4.1 are considered appropriate to define these center areas by their definitions. Therefore,
the network distance from a residence to its closest UFAA and DAA, respectively, are taken as the

major evaluation metrics.

Validation results are obtained as the average values of 10-time Monte Carlo simulations of the
residential location choice model. Shown in Tables 7-3 and 7-4 are summaries of the statistics, and

Figures 7-4 and 7-5 are illustrations of the spatial distributions.

Table 7-3. Validation Results of Network Distance to the Closest DAA (m).

Network distance to the . Standard
. . Mean Median .
closest Dwelling Attraction Area (m) Deviation
Observed 3,172 1,237 7,308
Simulated 2,265 1,222 5,425
Observed (data farther than 10,000m removed) 1,658 1,158 2,149
Simulated (data farther than 10,000m removed) 1,561 1,195 1,928

Table 7-4. Validation Results of Network Distance to the Closest UFAA (m).

Network distance to the . Standard
. i Mean Median .
closest Urban Function Attraction Area (m) Deviation
Observed 4,297 2,298 7,245
Simulated 3,458 2,170 5,567
Observed (data farther than 10,000m removed) 2,712 2,067 2,299
Simulated (data farther than 10,000m removed) 2,626 2,059 2,220

According to the comparisons of the summary statistics in Tables 7-3 and 7-4, the estimated

residential location choice model has good reproducibility in predicting the median value of the
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distance to both the nearest UFAA and DAA.
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Figure 7-4. Validation Results of Distribution of Distance to the Nearest DAA (m).
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Figure 7-5. Validation Results of Distribution of Distance to the Nearest UFAA (m).

However, it is not the case for mean values where the simulated value is around 20% smaller than
the observed one. The discrepancies are well explained by Figures 7-6 and 7-7, where the share of
those who reside more than 10,000m and 20,000m away from their closest UFAA or DAA,
respectively, are underpredicted by more than 50%. These extreme values affect to a great extent
the mean values, hence causing discrepancies in the validation. Some variables concerning the
historical influence (e.g., some seniors might just prefer to keep living in remote areas where their
ancestors have long been residing) could be advised to be added to the model estimation in the

future, as we are currently not accessible to such data. Also shown in Tables 7-3 and 7-4, the
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difference between the mean values after removing those that are farther than 10,000m is much

narrower, which should support the speculation above.

Another simpler indicator: the ratio and count of households residing in DAA are also assessed,
which is more straightforward to comprehend and will serve as one of the policy evaluators. Its
validation results are shown in Table 7-5, where the simulated values are also averaged from 10 time

repeated simulations.

Table 7-5. Validation Results of Ratio of Household Residing in DAA.

Ratio

Count (total #household = 3,285 in
the validation dataset)

Ratio and Count of Household Residing in
Dwelling Attraction Area

Observed 1,328 40.4%
Simulated (data farther than 10,000m 1344 40.9%
removed)

In summary, the estimated model shows sufficient reproducibility and is adequate for forecasting.
However, as bias caused by the extreme values is confirmed, the subsequent analyses will focus on

the median statistic for the distance indicators.

187






CHAPTER 8 RESIDENTIAL LOCATION MODEL APPLICATIONS

AND EVALUTIONS

This chapter simulates the residential location model built in the previous chapter to assess the
residential location pattern change under the AV Scenarios. Two hypothetical policy mandates are

then imposed as attempts to mitigate the potential side effects of the AV introduction.

8.1 Model Application Settings

The four AV Scenarios plus Base Scenario proposed in Section 6.1 (Table 6-1) are applied to the
residential location model proposed in Chapter 7 in a stochastic microsimulation way (Section 5.4).
The inputs for all the scenarios are in their transport convergence states (Section 6.3). The worth
mentioning settings and assumptions that are used through the simulation process are presented

as follows.

Regarding the residence moving choice, we assumed that the households would decide to move or
not every five years following the observed moving choice results currently in the study region. To
elaborate, the moving choice is applied based on the data from the National Census (Statistics
Bureau of Japan, 2015) that recorded the probability of whether households still reside where they

were 5 years ago. The probability of whether a household would move by 2040 is calculated as:
P,=1-R,°

Where, P, is the probability of moving by 2040 for the category a by the age of the head of
household. R, is the ratio of household stayed between 2010 and 2015 for category a. The fifth
power means that there are five periods of five years between 2015 and 2040. R, and the results of
P, for each a are shown in Table 8-1. Monte Carlo simulations are then run to decide whether the

household would move before simulating the residential location choice.
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Table 8-1. Probability of Residence Moving Behavior.

Age of the head of (0,15) [15,19] [20,24] [25,29] [30,34] [3539] [40,44] [45,49]
household

Ratio of the not 0.500 0.0360 0.0542 0.135 0.262 0.467 0.648 0.755
moved last five years

Probability of 0.969 1.000 1.000 1.000 0.999 0.978 0.885 0.755
moving by the target

year

Age of the head of [50,54] [55,59] [60,64] [6569] [70,74] [75,79] [80,84] [85)
household

Ratio of the not 0.827 0.878 0.911 0.931 0.947 0.957 0.962 0.965
moved last five years

Probability of 0.612 0.478 0.372 0.302 0.237 0.197 0.177 0.161
moving by the target

year

This treatment of moving behavior should be considered a limitation of this approach as the moving
choice is supposed to be formulated as a model dependent on various demographics of the
household, its current (or even earlier) residential location, etc. Such model structure can be found,
forexample, in the updated version of UrbanSim (Bierlaire et al., 2015). Incorporating this dimension
of choice would yield more realistic forecasts for future residential location patterns. In this case, one
can consider the moving choice is executed via a very fundamental model, which assumes the

current behavioral preference to hold in the next 25 years with only one variable considered.

Second, as mentioned in also Section 6.1, the demographic patterns across the population in 2040
are assumed the same as in 2015. This could seriously limit the long-term forecasting reliability and

policy response sensitivity.

Third, for each household, 25 sampled alternatives of mesh cells are provided as the choice set with
the same sampling methods and correction terms as having been done in model estimation

(Section 7.2).

Fourth, Activity-based Accessibility is pre-calculated for each sampled alternative in the choice set
given the AV settings. The original ABA for individual n (ABA,°"9"%) in the normalization
procedure (Sections 3.2.2 & 6.4) refers to the ABA of n given the current home location of n’s
household with the HV settings. One minute of travel time is still applied to satisfy the Scale

190



Condition and for the convenience of the following analyses.

Fifth, land prices are updated for each scenario before the residential location simulation. This is
necessary because the impedance levels, which vary with different scenario settings, affect the tour-

based logsum calculation, which is used in the land price model (Section 7.1).

Last, the land use loop in Figure 3-1 is not implemented for the current simulation results due to the
high computational burdens. Ideally, the effects of the changed residential location choice should

be captured to provide more reliable forecasts in transport, and land use as well.

8.2 Model Simulation Results of Automated Vehicle Scenarios

After Monte Carlo simulations, we have predicted the residential location for each household in Tkm

mesh cell level for Base and AV Scenarios.

The distributions of the number of households by mesh cell are firstly shown in Figures 8-1 to 8-5
for Base and AV Scenarios. The results under AV scenarios are presented with difference values
against the Base Scenario. The legends for the AV Scenarios are shown with the same legend for the

purpose of comparison.

Compared to the Base Scenario, moving trends from the center areas (Sub-section 3.4.1) can be

found in all four AV Scenarios, with Scenarios 2 and 4 found with higher extents.
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Figure 8-1. Number of Households by Mesh Cell of Base Scenario.
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Figure 8-2. Number of Households by Mesh Cell of Scenario 1 against Base Scenario.
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Figure 8-5. Number of Households by Mesh Cell for Scenario 4 against Base Scenario.

The indicators proposed in Section 7.3, network distance to the closest UFAA and DAA, and ratio of

households residing in the DAA are then evaluated to identify the moving trend more clearly. The

summary results of the evaluators are shown in Table 8-2. The data are all averaged from 10-time

simulation runs.

Table 8-2. Simulation Results of Residential Location Model.

2015 PT Base . . . .
. Scenario1 Scenario2 Scenario3 Scenario4
Data Scenario
Measures Value Value Value Value Value
Value (% change (% change (% change (% change (% change
against PT) against Base)  against Base)  against Base)  against Base)
Median Value of network 1,326 1,363 1,401 1,399 1,435
distance to the closest 1,243 29 5 89 7 . 2
DAA (m) (+6.7%) (+2.8%) (+5.7%) (+5.5%) (+8.2%)
Median value of network 2,507 2,571 2,685 2,700 2,762
distance to the closest 2,328 5 79% 5 6% 7 1% 7 79% 1009
UEAA (m) (+ . o) (+ K o) (+ . o) (+ . o) (+ . o)
Ratio of Household 40.2% 36.8% 34.5% 33.1% 34.3% 32.8%

Residing in DAA
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From the results, we can again identify clear moving trends to reside where are more distant to both
DAA and UFAA. Even for Base Scenario that differs from the PT data only in population size, the
median value to the residents’ nearest DAA and UFAA are found to increase by around 7%
presumably due to the improved level of service in the road network. With the introduction of PAVs,
these two values against Base Scenario escalate to up to at most 8.2% and 10.2%, respectively, under
Scenario 4. The residents are attracted by the increased accessibility and lower land price so they
decide to live farther from the city centers. As for the ratio of residents in DAA, all AV Scenarios

witness decreases against Base Scenario, dropping at most to 32.8% from 36.8%.

As expected, both AV characteristics (value of travel time and road capacity benefit) contribute to
the moving trend as Scenario 4 shows results with the highest increase rate. It is interesting to find
that Scenarios 2 and 3 show similar performance in the two median distance evaluators. This
suggests that the effect of road capacity benefit is at a similar level to the more optimistically set
value of travel time, which is not anticipated as the effects from road capacity benefit is generally
smaller for evaluators in transport (Section 6.3). However, when comparing the ratio of residents in
DAA, the result of Scenario 3 is still at a similar level to Scenario 1, but not Scenario 2, which indicates
that the two AV characteristics could contribute to the moving trend in a different way. We will

revisit the issue with the following illustrations.

Figures 8-6 to 8-9 show the shares of residence by distance to the nearest DAA and UFAA for detailed

changing patterns of residential locations.
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Figure 8-6. Distribution of Distance to the Nearest DAA.
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Figure 8-7. Distribution of Distance to the Nearest DAA (Stacked by Scenarios).
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Figure 8-9. Distribution of Distance to the Nearest UFAA (Stacked by Scenarios).
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The distribution results generally confirm the findings from Table 8-2. In particular, it is found that
the residents tend to shift to the areas that are 2km to 6km apart from the nearest DAA and 3km to
7km apart for the nearest UFAA, but not further in all the AV scenarios. This suggests where the new

housing and transport cost balance occurs.

It is noted that when comparing Scenarios 1 and 3 in Figures 8-6 and 8-8, the distance results of the
two scenarios regarding the nearest DAA are basically similar but show discrepancies between 2km
and 6km regarding the nearest UFAA. However, the results from Scenarios 1 and 2 show
discrepancies in both distance evaluators. The difference suggests that, with road capacity benefits,
people are moving away from UFAA to an extent that is not as much as being away from DAA. We
argue that these results are intuitive as road capacity benefits improved average speed among the
DAA cells (Table 6-5) so that accessibility of these areas should improve compared to no road

capacity benefit assumed for Scenario 1.

We also calculated the Activity-based Accessibility on relocated residences for an image of surplus
earned approximately after the relocation. The results of the four AV Scenarios are shown in Table
8-3 and Figure 8-10, where the normalization procedure is now taken against the original residence
location of each person. In this sense, the accessibility values show the "expected utility-equivalent
time trip-makers could gain from making daily travel schedules from the relocated residence with

PAV introduction, compared to the situation without relocation”.

According to the results, it is interesting to find that most people still have positive accessibility gains,
though decreased by mean and median compared to the results in Table 6-7 (for example,
accessibility value decreases from 3.09 to 2.38). This suggests that even by average and median
people are moving to where transport convenience should be lower, they still have positive gains

from the PAV introduction for the study region.

To reiterate, the accessibility applied here suggests only those expected utilities from transport,

which means those monetary related are not concerned. Since neither cost coefficient nor
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household/individual monetary budget data are available, this should remain a future task.

Table 8-3. Summary to Activity-based Accessibility under AV Scenarios after Relocation.

Normalized ABA  Descriptive summary
values versus

Ba'se' Sc|enarlo " Mean Median Min Max Standard
Origina que (95% confidence level) ' ) Deviation
Address (min)
Scenario 1 1.96 (+ 0.053) 1.74 -24.34 69.93 443
Scenario 2 2.65 (+0.057) 2.30 -25.86 70.03 481
Scenario 3 2.04 (+ 0.053) 1.78 -26.52 74.14 4.46
Scenario 4 2.69 (£ 0.058) 2.38 -40.06 125.28 4.90
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Figure 8-10. Distribution of Activity-based Accessibility after Relocation under AV Scenarios against Base.

8.3 Policy Mandates to Mitigate Residential Location Expansion

Gunma Prefecture, like other Japanese regional areas, is suffering from a population decrease and

vacant existing facilities. Urban Planning of Gunma 2020 (Gunma Prefectural Government, 2020)
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explicitly mentioned pursuing compact city designs as one of their visions. Low-density areas have
been putting much pressure on the local government finance, and it would be even worse if that
pattern held hereafter. The application of Local Optimization Plan (MLIT, 2021; see also Sub-section
3.4.1) was emphasized, as one of the policies outlined in Urban Planning of Gunma 2020 to address
the problem. Local Optimization Plan is a municipal-level plan aiming at attracting facilities and
residents to the designated area in the city centers. One main feature of the Plan is that not “to
regulate” but “to attract” are considered as the measures.

Recall that there are two specific types of attraction areas defined in Local Optimization Plan: Urban
Function Attraction Area (UFAA) and Dwelling Attraction Area (DAA), differentiated by the attracting
targets of them. Specific measures to achieve the targets vary by each municipality. For example,
the Local Optimization Plan of Maebashi City (Maebashi Municipal Government, 2019), the
prefectural capital of Gunma, proposed some measures that are summarized in Table 8-4 for

attracting residents to DAA.

Table 8-4. Measures of Maebashi City to Attract Residents to DAA.

Attraction  Targetand category  ..qres for the area

Targets of measures
Reconstruction of decrepit buildings.
Maintaining the urban Utilization of vacant land and housing stock.
infrastructure in DAA Embarking redevelopment businesses.
Promoting land categorization.
Residents

Improving the living
environment in DAA
Attracting residents
outside Maebashi

Subsidizing residence developers and rents for students.

Benefits to those outsiders who are seeking jobs in Maebashi.

The idea from the first two categories of measures in Table 8-3 applies to the methodology
framework adopted in this dissertation, though in a more general way: not within the resolutions as
fine as what proposed by the municipal government as parcel-level treatments are not manageable
given the adopted methods in this dissertation.

As such, we applied two policies for the AV Scenarios to gain insights into possible countermeasures
to attempt to mitigate the residential location expansion issues found in the previous section:

1. To grant tax exemptions for land development in DAA.
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2. To attract the number of tertiary-sector employees from non-UFAA to UFAA.
They are evaluated and discussed in the following as Policy 1 and Policy 2, respectively.
The rationale behind Policy 1 is simply to attempt to re-balance the transport and housing cost
trade-off in the residential location choice so that to mitigate the negative effects of increasing
accessibility in suburban areas. The change in land price will have no impact on the transport choices,
so the application of Policy 1 is straightforward by modifying the land price attributes for the mesh

cells in DAA (Figure 3-4).

The value of 10% is proposed because it turned out to be the level that could obtain similar
performance to the Base Scenario for Scenario 1 (Section 8.4), the most conservative scenario
adopted in this dissertation. So at least for Scenario 1, this specific level could be interpreted as the
effective level to offset the expansion effect. Plus, it is considered that values higher than 10% would
be less realistic to be achieved through imposing such a policy mandate, which means attempting

to offset all the expansion effects in other scenarios was not pursued.

The rationale behind Policy 2 is that by making UFAA more attractive, the accessibility of DAA which
are generally spatially close to UFAA would increase. Meanwhile, reducing the corresponding part
of employees in the non-UFAA would make these areas enjoy less accessibility, thus decreasing
people’s willingness to move there. One level: 30% is assumed to be increased in the UFAA from its
original value. The value of 30% is proposed simply because it is the extreme value that could be

imagined to be the result of imposing such a policy mandate.

Under Policy 2, the number of tertiary sector employees in the UFAA is expanded by 30%, then the
sum of the increased values from the UFAA is considered as the total that must be offset by non-
UFAA, whose values are decreased accordingly by the weight of their respective original values of

the number of tertiary sector employees.

Compared to Policy 1, this policy is expected to impact the whole system in a relatively more

complex way. First, the number of employees is one of the independent variables in the Destination
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models (Section 5.3), hence a re-running of the DAS-MATSIm loop is required. Second, the number
of employees also impacts the tour-based logsums, independent variables in the Land Price model

(Section 7.1), hence updates in land price are required.

The simulation results of transport models under Policy 2 for the AV scenarios are shown in Table 8-
5in a brief form for simplicity. The counterpart results with no policy imposed (Table 6-5) are added

for comparison. The four AV scenarios converge at Iterations 4, 5, 5, and 6, respectively.

Table 8-5. Simulation Results Summary of Transport Evaluators under Policy 2.

Base

. Scenario 1 Scenario 2 Scenario 3 Scenario 4
Scenario

Value Value Value Value

Measures (% change against (% change against (% change against (% change against
Value base) base) base) base)

No. Policy 2 No. Policy 2 No. Policy 2 NO. Policy 2

policy policy policy policy

26,560 26,676 26,850 26,897 26,685 26,734 26,805 26,877
#Tours 26,566

(-0.02%)  (+0.4%)  (+1.1%)  (+1.2%)  (+04%)  (+0.6%)  (+0.9%)  (+1.2%)

. 67,792 67,586 68,408 68,630 68,152 68,123 68,266 68,338

#Trips 64,642

(+4.9%) (+4.6%) (+5.8%) (+6.2%) (+5.4%) (+5.4%) (+5.6%) (+5.7%)
Mode share (by
trips) of PAV or 71.7% 86.4% 86.6% 89.2% 89.3% 87.0% 86.8% 89.3% 89.4%
Car (driver)
Total distance
traveled (100km) 3401 4,679 4,754 5,541 5,674 4,815 4,792 5,676 5,699
of PAV or Car ’ (+#37.5%) (+39.8%) (+62.9%) (+66.8%) (+41.6%) (+40.9%) (+66.9%) (+67.6%)
(driver)
Average trip 7987 8119 9076 9263 8121 8101 9307 9,329
distance (m) of 7:339 8.8% 0.6% 23.7% 26.2% 0.7% 0.4% 26.8% 27.1%
PAV or Car (driver) (+8.8%) (+10.6%) (+23.7%) (+26.2%) (+10.7%) (+10.4%) (+26.8%) (+27.1%)
Average speed
among DAA mesh 33.57 31.63 3242 31.06 31.70 33.07 33.18 32.36 32.40
cells in AM Peak ’ (-5.8%) (-3.4%) (-7.5%) (-5.6%) (-1.5%) (-1.2%) (-3.6%) (-3.5%)

time (km/h)

%Trips heading

for UFAA mesh

cells (excluding 15.7% 16.3% 19.7% 16.3% 19.8% 16.2% 20.0% 15.7% 19.9%
those back home and

zero-occupancy trips)

From the simulation results, we basically observed a longer total distance traveled and average trip
length under Policy 2. This is because more trips under Policy 2 headed for UFAA mesh cells as a
result of more bustling urban centers (see the last row of Table 8-5). However, the changing rate of

Scenarios 3 and 4 are much more moderate (the results of Scenario 3 decreased slightly in fact)
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compared to those of Scenarios 1 and 2. Presumably, the reason for these is that the road capacity
benefits have already, in the no policy case, generated trip patterns that span across the urban
centers (which is difficult to identify specifically) where the congestion levels are lower than the
other two AV scenarios. As such, the trip distance traveled barely changed even though around 4%
more trips are now heading to UFAA, and hence the average speed changed just slightly as well.
Similar changing patterns can be found also in average speed among DAA mesh cells, where those
of the scenarios having no road capacity benefit improved more than those of the scenarios
assuming road capacity benefit compared to the no policy case. Although the difference in the
changes among the AV scenarios could be attributed to what have discussed above, it is
counterintuitive that the average speeds improved compared to the no-policy case. As 4% more
trips are now heading to UFAA, we expected the congestion level among the city centers would be
worse. We speculate that this is because as the trips are more concentrated to UFAA under Policy 2,
the trips among the DAA mesh cells are not necessarily increased as they are not the target of this
policy. Also, the average speed among those spatially separated DAA mesh cells (Figure 3-4)
probably has improved as more trips are heading to the UFAA.

To summarize, the effects of Policy 2 are indeed more complex as they seemingly are impacting the
transport system in various ways, which can make the land use model results under Policy 2 more

difficult to interpret.

84 Model Simulation Results of Automated Vehicle Scenarios under

Policy Mandates

The simulation results of the AV scenarios under the two policies along with the results under no

policy (Table 8-5) are shown in Tables 8-6 and 8-7.
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Table 8-6. Simulation Results of Residential Location Model under Policy Mandates (Scenarios 1 & 2).

Scenario 1 Scenario 2
Value Value
Measures

(% change against Base) (% change against Base)

No policy Policy 1 Policy 2 No policy Policy 1 Policy 2
Median Value of 1,363 1,296 1,398 1,401 1,348 1,430
network distance to 2.8% 2.3% 5.4% 5.7% 1.7% 7.8%
the closest DAA (m)  (+28%) (-2.3%) (+5.4%) (+5.7%) (+1.7%) (+7.8%)
Median value of 2,571 2,477 2,662 2,685 2,562 2,739
network distance to 2.6% 1.2% 6.2% 7.1% 2.2% 9.3%
the closest UFAA (m)  (+26%) (-1.2%) (+6.2%) (+7.1%) (+2.2%) (+9.3%)
Ratio of Household oo 38.3% 34.6% 33.1% 36.8% 32.9%

Residing in DAA

Table 8-7. Simulation Results of Residential Location Model under Policy Mandates (Scenarios 3 & 4).

Scenario 3 Scenario 4
Value Value
Measures

(% change against Base) (% change against Base)

No policy Policy 1 Policy 2 No policy Policy 1 Policy 2
Median Value of 1,399 1,351 1,392 1,435 1,387 1,428
network distance to 5.5% 1.9% 5.0% 8.2% 4.6% 7.7%
the closest DAA (m) (2% (+1.9%) (+5.0%) (+8.2%) (+4.6%) (+7.7%)
Median value of 2,700 2,578 2,650 2,762 2,679 2,734
network distance to 779 589 70 10.29 ) 19
the closest UFAA (m) (+7.7%) (+2.8%) (+5.7%) (+10.2%) (+6.9%) (+9.1%)
Ratio of Household ;.0 37.7% 34.6% 32.8% 36.4% 33.0%

Residing in DAA

As just argued, the simulation results suggest that granting tax exemption can significantly alleviate
the residence expansion problem. For Scenario 1 where the characteristics of PAVs are assumed
relatively conservative, the three indicators are found to be able to achieve even better levels than

what was observed in Base Scenario.

For the other three AV Scenarios with more optimistic AV assumptions, all the metrics under Policy
1 are found to improve compared to the no-policy case. For example, the median value distance to
the nearest DAA dropped from a 5.7% increase to a 1.7% increase in Scenario 2. The ratio of
households residing in DAA in all the scenarios except Scenario 4 is equal to or better than Base
Scenario. This suggests that people tend to relocate to the edge (compared to Base Scenario) of DAA
to enjoy the benefits from both PAV and Policy 1. Therefore, the designation of the policy target
area, from the results, should merit more attention.
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Figures 8-11 and 8-12 show the shares of residence by distance to the nearest DAA and UFAA,
respectively, under Policy 1. The results confirm that many households have relocated inside DAA

compared to the no-policy case.

Overall, it can thus be summarized that providing a subsidy on the land price or its equivalents could
be effective to mitigate urban expansions. However, the cost to impose such a policy mandate is
expected to be enormous. By a rough calculation, the total cost that the prefectural government
would pay for Policy 1 per Tm2 is the sum of the housing stock of each DAA mesh cell (Section 7.1)
X land price of each DAA mesh cell (Section 7.1) x 10%, which for Scenario 1 as an example is
approximately 1.4 billion JPY. The calculated value then should multiply the average area of housing
stock, which is 106 m2 according to the Statistics Bureau of Japan (2018), and we can derive a total
amount of 148 billion JPY, around 15.6% of the yearly expense of the prefecture in 2021 (Gunma

Prefectural Government, 2022).
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Figure 8-11. Distribution of Distance to the Nearest DAA Under Policy 1.
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Figure 8-12. Distribution of Distance to the Nearest UFAA Under Policy 1.

For the results under Policy 2, the measuring indicators are surprisingly found to deteriorate in
Scenarios 1 and 2 compared to the results without any policy imposed. The results in Scenarios 3

and 4 improved compared to the results under no policy but to a fewer extent than Policy 1.

To investigate, the distribution of shares of the distance to the nearest DAA and UFAA are shown in
Figure 8-13 and Figure 8-14. By comparing these two figures with Figure 8-6 and Figure 8-8, two

speculations are presented in the following to explain the results.

First, despite that the distributions regarding distance to the nearest DAA do not show substantial
changes (Figures 8-6 & 8-13), we can identify some differences in, for example, the shares of distance
longer than 1Tkm but no more than 2km, the results of Scenarios 1 and 2 under Policy 2 decreased
slightly compared to the no-policy case, while the shares of distance longer than 3km but no more
than 6km, the results yet increased. These suggest that the road network level of service around

UFAA decreased hence has reduced the accessibility and the willingness to relocate there. This is,
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however, not the case for Scenarios 3 and 4, where road capacity benefits of AVs should offset the

negative effects.

Second, in general for all AV scenarios, the decrease in the number of employee level in the non-
UFAA to some extent increase the chance to move there as the number of employees is a parameter
with a negative coefficient in the residential location choice model (Table 7-2); this reasoning also
applies to decreased land price through the re-calculation of the land price model (Table 7-1) where

the tour-based logsum variables are reduced with fewer employees for non-UFAA.

In summary, Policy 2 of attracting tertiary-sector employees seems to be not as effective as Policy 1,
as its effects on both transport and land use could lead to a complex changing pattern from the
models adopted. Nevertheless, the results of Scenarios 3 and 4 do have slight improvement
compared to no policy imposed. It is instructive to learn from this point as road capacity benefit, as

mentioned in Section 6.1, can be the AV characteristic that is more flexible in future policy making.
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Figure 8-13. Distribution of Distance to the Nearest DAA under Policy 2.
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208



CHAPTER 9 CONCLUSIONS AND LIMITATIONS

This chapter first summarizes the whole dissertation, then presents several limitations that this work

failed to cover, and gives a brief discussion on the future work to address them.

9.1 Summary

This dissertation conducted a travel forecasting project with the background of potential
prevalence of automated vehicles in a Japanese regional area. The rationale and originality behind
such a topic are presented in Chapters 1 and 2: after an introductory Chapter 1 stating the
information such as the rationale and the research objective of this dissertation, Chapter 2 presents
a relatively comprehensive literature review on three aspects, namely activity-based travel demand
model, integrated transportation model, and automated vehicles. Some conclusions drawn from
the literature review include that first, building a combined framework of activity-based travel
demand model and dynamic traffic assignment model is significant in examining transport impacts;
second, AV impacts can be categorized by the extent of investigation made so far, where

implications in land use are so inadequate that deserve much more academic efforts.

To address the topic, a methodology framework combining an activity-based travel demand model,
a dynamic traffic assignment model, and a discrete-choice-based residential location model is
adopted and introduced in Chapter 3. The reasoning behind the method and sources of data are
also described. The methodology framework can be separated into two transport models and one
residential location model. The “bridge” connecting these two components is a concept called
activity-based accessibility, which has not been applied much despite the general form of

accessibility being considered common practice.

Chapter 4 and Chapter 5 then provide elaborations on the travel demand model and travel supply
models, respectively. Considerable efforts have been devoted to the model estimations and
validations for both chapters. As result, two well-validated models are built and should serve the

transport forecasting in good temporal and spatial resolutions.

209



The major outputs of this dissertation besides these well-validated models are the simulation results
of automated vehicles in both transport and land use. Chapter 6 clarifies the way of simulating and
interacting with these two transport-related models and shows the simulation running results as
well as analyses under four automated vehicle scenarios with different levels of features. It is found
from the results that, the prevalence of private automated vehicles in such a currently car-
dependent study region would carry implications in a rather complex way: a lower network level of
service was observed while the median value of activity-based accessibility (as the expected utility
from activity-travel schedules in a whole day) was found positive. Despite that this has been
recognized in the existing literature, few ever discussed it with the feedback effect considered, as
what has been done in this dissertation. Through the transport demand-supply loop framework,
adaptations to avoid traffic made by the trip makers with automated vehicles were discovered. In

this sense, the necessity to exercise the loop has been confirmed.

Chapter 7 gave the specification of an MNL-based residential location model with estimation and
validation procedures emphasized as well. Applications of the residential location model are shown
in the following Chapter 8. The findings of the land use model seem to be relatively more
straightforward. All the scenarios reported negative shifts in all three indicators of median distance
to the nearest Dwelling Attraction Area (DAA), to the nearest Urban Function Attraction Area (UFAA),
and the ratio of the households residing in DAA. The shifts are considered as the new balance of the
trade-off between the housing costs and the transport costs since the moving household are found
to concentrate in distance zones just around 2km more distant (in the sense of the distance to the
nearest DAA) than their original pattern. The ability to use the DAA and UFAA as validation and
policy testing objects is at large because of the fine spatial resolution of the 1Tkm level used in this
study. Two hypothetical policy mandates are also evaluated as attempts to mitigate the moving
trends. As result, granting subsidies for the land prices in DAA is found effective, but not so for the
policy to attract the number of tertiary-sector employees to the UFAA. These findings should

suggest insights into values for future policy makings.
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9.2 Limitations and Future Works

In general, a transport forecasting project like what was done in this dissertation can never be
perfect. This statement is especially true when it is extended to land use forecasting. This work is
subjected to many limitations, besides those that have been mentioned in the body of this

dissertation, some representatives are discussed or even reiterated below.

First, as a study on the implications of private automated vehicles, this dissertation focuses on three
assumed changes in vehicle characteristics compared to human-driven vehicles. However, some
more sophisticated behaviors with the AV introduction are not measured. For example, despite that
PAV intra-household sharing behavior has been deployed with the simulation models, how would
the sharing induce more travels is not incorporated in the current model system. A more

sophisticated modeling tool would be required to examine those potential changes.

Second, the limitations of the activity-based travel demand model adopted (i.e., the DAS model),
should be shared. For the model specification used in this study, at least two obvious points can be
improved in the future: one is that individual-specific time budget has not been explicitly
incorporated; the other is that the logsum variable fails to reflect changes from the time of day and
other trip-based level choices. Both points have considerably impaired the reliability of the model
results and conclusions. Especially, if well managed, the time budget constraint should produce
more realistic induced travel distance results. An improved version of DAS is expected to solve the
limitation, such as in the empirical analysis by Vyas et al. (2019) where another activity-based travel
demand model CT-RAMP was used. Also, the sensitivity of this model specification to the policies
seems to be not adequate, as the daily activity pattern under AV scenarios does not demonstrate

significant changes (Figure 6-3).

Third, “More data beats clever algorithms” (Peter Norvig), limitations related to the currently
accessible data should be another source of error in the prediction. For example, the Person Trip

data used as the initial travel demand are collected in a trip-based way. Although much existing
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literature and this study have managed to convert the survey data to a tour-based or even day-
pattern-based, biases are in no way to be neglected through the data processing work. It hence
would be better to use tour-based travel demand data directly for such forecasting efforts, so it is
urged to conduct surveys with these concerns. Besides, more types of land use data in the resolution
of mesh cell level or even finer should allow not only higher model reliability but also greater
potential in improving responsive properties to policies. The lack of data at the mesh cell level has

made the policy testing analysis limited in this dissertation.

Fourth, to better reflect the characteristics of automated vehicles, investigations such as a Stated
Preference survey might be advised. However, as argued in the literature review, such surveys are

supposed to be designed very carefully to prevent any unexpected results''.

Fifth, besides private automated vehicles, the methodology framework of this research is also
suitable for accommodating shared automated vehicles as one of the study objects. The supply
model of MATSim has been adopted in much existing literature as a simulation tool for modeling
shared automated vehicles. However, in that case, appropriately calculating the accessibility for

shared mobility would become another challenge, which could also be extended to pubilic transit.

Finally, there is a large room for improvement in the land use model adopted in this research.
Despite that increases in both model complexity and data requirements should be expected,
aspects such as job location choice, development choice of housing or other facilities (Figure 3-1),
etc. are better to be incorporated to acquire more realistic forecasting in the long term. A life-cycling
model to reflect the demographic changes in the long term is also desirable in acquiring more
reliable forecasts. Furthermore, the land use loop in Figure 3-1 is advised to be performed in the
future. It is expected that the negative effects such as urban expansion could be mitigated through
the long-term loop: people relocating further away from the city centers would probably deteriorate

the traffic level of service there thereby lead to a tendency to move back in turn.

1 In fact, a failed attempt of conducting an SP survey was made by the author.
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