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都市の物的環境と交通行動の因果関係に関する研究 

—日本の諸都市を事例として— 
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The connection between the built environment and travel behavior has been the object of interest of a considerable number of 

studies in the past twenty years. As concepts such as Smart Growth, Compact Cities and New Urbanism permeate the 

sustainability discourse, the validity of the argument that high density, compact and mixed-use cities might reduce car use and 

promote the use of alternative modes hinges on the existence of a true causal mechanism between the built environment and 

travel behavior. This study uses data from several Japanese cities to test the existence of this causal relation using both panel 

and cross-sectional data. Findings suggest the existence of a causal mode substitution mechanism between car and non-

motorized modes given increases in the urbanization level at residential location, providing some empirical support to the 

arguments put forth by Compact City advocates. 

 

1. Introduction 

Against the backdrop of urban sprawl and 

suburbanization, worsening traffic conditions and 

declining city centers, recent years have seen a paradigm 

shift in the conceptualization of what constitutes good 

urban development. Be it New Urbanism or Smart Growth 

in the United States, or Compact Cities in the EU and 

Japan, there seems to be a push towards more transit-

connected, compact, and mixed-use cities, and 

neighborhoods that are more walkable, more bikeable, and 

more complete (Congress for the new urbanism, 2000; 

Kaido, 2001; Duany, et al., 2010).  

One of the main premises behind the Compact City 

concept is the existence a non-spurious, causal mechanism 

behind the built environment-travel behavior connection. 

The validation of this causal relation is thus the principal 

object of interest of this dissertation. As such, the 

overarching research questions this study seeks to answer 

are: 

 Is the effect of the built environment on travel 

behavior a causal effect? 

 If so, what is the nature of this effect? 

 

2. Literature review 

2.1. Built environment, travel behavior and causality 

In recent years, researchers have tried to validate the 

existence of a causal mechanism that would support the 

hypotheses put forth by high-density and mixed-use 

advocates. Although factors such as population density 

and land use mix have been consistently associated with 

lower levels of car use (Cervero & Kockelman, 1997) and car 

ownership (Sun, et al., 2012), findings are rather mixed. 

Although a great number of studies have established 

significant statistical associations between the built 

environment and travel behavior, establishing a causal 

relationship hinges on stronger conditions that are 

sometimes difficult to meet outside an ideal randomized 

experiment.  

One particular threat that has drawn the recent attention 

of researchers in the planning field is the issue of 

residential self-selection, a form of selection bias. Using 

the jargon of program evaluation literature, in the built 

environment and travel context, the treatment of interest 

can be defined as the vector of built environment 

characteristics whose effect the analyst is interested in 

measuring (i.e. population density, land use mix, 

urbanization, etc.). Given that these characteristics are 

partly defined by residential location, and that households 

are free to choose their location, treatment assignment is 

not random. Residential self-selection bias thus occurs 

when treatment assignment (residential location) is 

defined in function of outcomes (the travel behavior of 

interest).  

 

2.2. Addressing the self-selection problem 

   From a cross-sectional approach, self-selection bias 

can also be thought of as a kind of omitted variable bias. 

Consequently, this bias can be mitigated by including in 
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the deterministic component of the model equation the 

variables associated with residential location, such as 

preferences and attitudes, as well as other socio-

demographics. After accounting for attitudes and 

preferences, Kitamura et al. (1997) found that these factors 

explained a higher proportion of observed trip frequencies, 

and controlling for them reduced the magnitude of the land 

use effect. It is important to note that attitudes and 

preferences; however, do not render the built environment 

effect insignificant (Chatman, 2009). Using a similar 

strategy, strong effects have been observed particularly for 

non-motorized (NMM) trips, suggesting the existence of a 

mode substitution mechanism with private vehicles (Cao, 

et al., 2006; Naess, 2009). The statistical control approach; 

however, is limited by the uncertainty of the effectiveness 

of the covariates used, especially in the case of attitudes, 

where there is no overarching theory guiding the definition 

and measurement of attitudes (Bohte, et al., 2009). 

   Using an instrumental variable approach, Boarnet and 

Sarmiento (1998) used the percentage of buildings built 

between the 40s and 60s as an instrument for the built 

environment, and found no significant effects in most 

models and high sensitivity to model specification. On the 

other hand, using the same instrument, Vance & Hedel 

(2007) found evidence backing the existence of a casual 

mechanism between urban form and car use, and 

robustness to alternative model specifications. In spite of 

all, finding a proper instrument can be a difficult task. 

   From a quasi-longitudinal approach, changes in 

perception of accessibility have been associated with 

driving and walking level changes (Handy, et al., 2005; 

Handy, et al., 2006). SEM studies have also found evidence 

of mode substitution with higher level of car use and lower 

levels of transit use associated with suburban relocation 

(Scheiner & Holz-Rau, 2007). The main limitation of this 

approach; however, is the risk of forgetting past behaviors. 

   Finally, from a longitudinal approach, using first-

differenced OLS regressions Krizek (2003) found that as 

neighborhood accessibility increases, number of 

household tours increase, yet driven distances decrease. 

Although ideal due to its proximity to an experimental 

situation, true panel data studies in the literature are rather 

few in number due mostly to data collection difficulties. 

As such, the first analysis presented in this article consists 

of a panel data analysis. 

    

3. Panel data analysis: empirical application on the Kashiwa 

no Ha Campus District 

   In order to contribute to the existing body of literature in an 

area where it is currently lacking, this section addresses the built 

environment and travel behavior relationship from a panel data 

perspective. Specifically, the object of interest is to understand 

how changes in the land use characteristics around home 

location affect activity frequency by mode. It is hypothesized 

that there exists a mode substitution mechanism between private 

vehicle and non-motorized modes given an increase in 

accessibility to any given activity around home location.  

   To test these hypotheses, data from a panel data survey 

conducted by The University of Tokyo between autumn 2007 

and autumn 2008 on relocating households were used. The 

survey was conducted on households that purchased new 

apartments in the Park City Kashiwanoha Campus Project, 

located in the Kashiwanoha area of Kashiwa city, Chiba 

prefecture, at roughly 30 Kilometers from Tokyo (Figure 1). 

Information was gathered on household characteristics, 

individual travel behavior (activity frequency by mode) 

and lifestyle before and after moving.  

 

Figure 1. Location of the Park City Kashiwanoha Campus and 

Previous Location of Households (Image source: Troncoso 

Parady et al. (2014b)) 

   A fixed effect model was used to estimate the effects of 

interest. The model is of the form  

yit = αi + 𝛃𝐱𝐢𝐭 + 𝛄𝐳𝐢𝐭 + εit      (1) 

where α is the unobserved individual fixed effect, x is a vector of 

time changing socio-demographics, z is a vector of time 

changing built environment features, and ε idiosyncratic error.  

   In the context of this analysis, let t0 be the time period before 

moving, and t1 be the time period after moving. Given model 

equations at t1 and t0 for the ith individual respectively, by taking 

the deviation from mean at each time t, we then get a time 
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demeaned equation for the ith individual: 

yt − y̅ = α − α̅ + 𝛃(𝐱𝐭 − �̅�) + 𝛄(𝐳𝐭 − �̅�) + εt − ε̅  (2) 

   As shown in Tables 1-3, six models were estimated 

using different activity frequencies as dependent variables. 

 

Table 1. Fixed effect model estimation results for overall activity 

frequency 

Fixed Effect Model 
(robust) 

Model 1:  Log of 
yearly activity 

frequency by car 

Model 2:  Log of 
yearly activity 

frequency by NMM 

N 176   176   
No. of parameters 92   92   
Degrees of freedom 84   84   
SSR 175.97   168.99   
Standard error of e 1.45   1.42   
F test (prob) [ dfr, dfur]  
H0: No fixed effect or fit in 
regression 

3.26(0.0
00) 

[91,84] 
2.42(0.0

00) 
[91,84] 

F test (prob) [ dfr, dfur]  
H0: No fit in the regression 

7.05(0.0
00) 

[4,171] 
5.54(0.0

00) 
[4,171] 

F test (prob) [ dfr, dfur] 
H0: No fixed effect  

2.79(0.0
00) 

[87,84] 
2.133(0.

000) 
[87,84] 

Log likelihood -249.72   -242.44   
Restricted Log likelihood -382.68   -359.50   

Chi-sq (prob) [df]  
265.91(
0.000) 

[91] 
226.69(0

.000) 
[91] 

Variable β t stat β t stat 

Change in distance to 
station (Km) 

0.246  
3.723 

-0.402  
-2.919 

(0.066)  (0.137)  

Car number reduction 
-0.086 

-0.313 
0.327  

0.690 
(0.273)  (0.474)  

Car number increase 
2.075  

4.250  
-0.255  

-0.654 
(0.488)  (0.390)  

Change in number of eating 
and non-grocery shopping 
facilities in a 0.5Km radius 

- 
- 

0.022  
2.090 

- (0.010)  

Change in overall number 
of facilities in a 1Km radius 

-0.010  
-3.084  

- 
- (0.003)  

 
- 

Classical model statistics 
test 

Log-L R2 Log-L R2 

1.Constant term only -382.67  0.000  -359.50  0.000  
2.Fixed effects only -273.05  0.712  -272.84  0.626  
3.Explanatory variables 
only 

-369.23  0.142  -348.77  0.115  

4.Explanatory variables and 
fixed effects 

-249.72  0.779  -246.15  0.724  

 

   Results from the estimated models provide some evidence 

of the existence –after controlling for residential self-selection– 

of a causal relation between changes in the built environment 

and activity frequency, conditional on activity type and transport 

mode.  

   Changes in the built environment were found to exert a 

significant effect on shopping and eating-out frequency given 

location and travel mode. A mode substitution effect was 

observed in terms of changes in the number of facilities and 

activities by location and distance.  

   Changes in number of vehicles in the household had 

significant effects on several types of behavior, however, it is 

important to note that this effect was found to be asymmetric, 

that is, the effect of a one car increase in the household is not 

necessarily the same in terms of magnitude (with an opposite 

direction effect) or statistical significance as the effect of one car 

reduction, furthermore, this relationship might well be different 

given the type of activity. 

   There are some limitations to the present study that are worth 

discussing. Firstly, the effective sample size is rather small, 

which, particularly in the case of fixed effect models is 

important, considering the reduction in variability of the data as 

a result of exclusion of time invariant explanatory variables, 

resulting in larger standard errors, and lower R-square values. 

 

Table 2. Fixed effect model estimation results for shopping 

frequency 

Fixed Effect Model 
(robust) 

Model 3: Log of 
yearly Car 

shopping frequency 
| Faraway 

Model 4: Log of 
yearly NMM 

shopping frequency | 
Nearby 

N 192   184   
No. of parameters 101   97   
Df 91   86   
SSR 152.10   134.27   
Standard error of e 1.29   1.25   

F test (prob) [ dfr, dfur]  
H0: No fixed effect or fit 
in regression 

2.21(0.0
0) 

[100,91] 1.81(0.02) [97,86] 

F test (prob) [ dfr, dfur]  
H0: No fit in the 
regression 

2.33(0.0
4) 

[5,186] 2.51(0.02) [6,177] 

F test (prob) [ dfr, dfur] 
H0: No fixed effect  

2.13(0.0
0) 

[95,91] 1.70(0.00) [91,86] 

Log likelihood -250.07   -232.10   
Restricted Log likelihood -368.38   -334.37   
Chi-sq (prob) [df] 236(0.0

0) 
[100] 204(0.00) [97] 

Variable β  t stat β t stat 
Change in distance to 
station (km) 

0.269  
2.875 

-0.078  
-0.937 

(0.094)  (0.085)  

Car number reduction 
-0.772 

-1.816 
0.829  

2.327 
(0.425)  (0.356)  

Car number increase 
0.426 

0.970 
-0.888  

-1.963 
(0.439)  (0.453)  

Change in distance to 
nearest grocery shop (km) 

-0.105  
-0.125 

-1.568  
-2.453 

(0.840)  (0.639)  

Change in number of 
grocery shops in a 0.5Km 
radius 

- 

- 

-0.101  

-3.811 
- (0.027)  

Change in number of 
non-grocery shops in a 
0.5Km radius 

- 

- 

0.037 

1.713 
- (0.022) 

Change in number of 
grocery shops in a 1Km 
radius 

-0.012  

-1.461 

- 

- 
(0.008)  - 

Classical model statistics 
test 

Log-L R2 Log-L R2 
1.Constant term only -

368.386  
0.000  -334.37  0.000  

2.Fixed effects only -
262.741  

0.667  -254.31  0.581  

3.Explanatory variables 
only 

-362.19  0.059  -326.85  0.078  

4.Explanatory variables 
and fixed effects 

-250.07 0.708  -232.09  0.671  

       

   Secondly, regarding external validity of results, it is 

important to note that given the nature of the study, inference 

might only be drawn for a specific socio-economic bracket and 

for specific changes in the built environment, such as those 

described earlier. Finally, attitudes are assumed constant in time, 

perhaps a strong assumption. A panel survey that measures 

attitudes in both periods would be ideal to rule out potential bias. 
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Table 3. Pooled OLS model estimation results for eating-out 

frequency 

Pooled OLS (robust) Model 5: Log of 
yearly car eating-

out freq.  Faraway 

Model 7: Log of 
yearly NMM eating-
out freq.  Nearby 

N 190   184   
No. of parameters 5   5  
Df 185   179   
SSR 243.08   493.80   
Standard error of e 1.15   1.66   
R.sq. 0.13   0.16   
F test (prob) [ dfr, dfur] 6.76(0.000

) 
[4,185
] 

8.75(0.000
) 

[4,179
] Log likelihood -293.00   -351.90   

Restricted Log likelihood -305.96   -368.32   
Chi-sq (prob) [df] 25.90(0.00

0) 
[4] 32.84(0.00

0) 
[4] 

Variable β t stat Β t stat 

Constant 
1.360 

6.133 
1.684 

5.144 
(0.222) (0.327) 

Change in distance to 
station 

-0.061  
-0.709  

-0.386  
-2.804  

(0.086)  (0.138)  

Car number reduction 
-0.079  

-0.233  
-0.465  

-0.952  
(0.334)  (0.488)  

Car number increase 
-0.473  

-1.310  
0.3632  

0.660  
(0.361)  (0.650)  

Change in number of 
eating and non-grocery 
shopping facilities in a 
0.5Km radius 

- 

- 

0.028 

2.250 
- (0.013)  

Change in number of 
eating and non-grocery 
shopping facilities in a 
1Km radius 

-0.020  

-4.603  

- 

- 
(0.004)  - 

 

4. Cross-sectional analysis: A propensity score approach 

under continuous treatment regime. 

   Due to the difficulties associated with gathering true panel 

data, and the wide availability of cross-sectional data, the next 

section focuses on the causality issue from a cross-sectional 

approach. To do so, a propensity score approach is implemented. 

   The propensity score, defined as the conditional probability 

of treatment given observed covariates, was proposed by 

Rosenbaum and Rubin (1983) as a way to remove bias due to 

observed covariates. By acting as a balancing score in a non-

randomized treatment (originally binary) assignment context, 

the propensity score makes inherently different groups 

comparable, the main advantage being the possibility of 

balancing a potentially large set of covariates X using one single 

scalar function.  Rosenbaum and Rubin also showed that a 5 

strata sub-classification of the propensity score might reduce 

over 90% of bias due to observed covariates.  

   In the planning literature several studies have highlighted the 

potential of the propensity score approach to mitigate selection 

bias (Boer, et al., 2007; Cao, 2010), however, most studies 

polarized the built environment to a binary treatment (usually 

urban vs. suburban), ignoring the inherent variability in terms of 

how “urban” or how “suburban” a neighborhood is. In that sense, 

a continuous approach is discussed that allows for the estimation 

of the average treatment effect by taking into consideration the 

full spectrum of variability in the urbanization level across a city, 

doing without the need to arbitrarily define what  “suburban” 

or “urban” means. 

   This study follows the generalization of the propensity score 

method proposed by Imai and van Dyk (2004) to allow for 

arbitrary treatment regimes TA. Following the proposed 

generalization approach, under a continuous treatment regime, 

the distribution of treatment TA given a vector of covariates X, is 

modeled as TA|𝐗~N(𝐗⊺𝛃, σ2) , where the propensity score 

function P(𝐗) = Pr{TA|θ𝛙(𝐗)} is Gaussian distributed and 

parameterized by 𝛙 = (𝛃, σ2), and θ𝛙(𝐗) = 𝐗⊺𝛃, thus the 

propensity score function is solely characterized by the scalar θ. 

In practice, �̂� is estimated through a linear regression of the 

treatment variable TA = tP and all covariates X, so that 

θ̂𝛙(𝐗) = 𝐗⊺�̂� , that is, the propensity score is uniquely 

characterized by the conditional mean function of the regression. 

Imai and Van Dyk, also demonstrated that even for non-binary 

treatments, the propensity score serves as a balancing score: 

Pr {TA|𝐗 , P(𝐗)} = Pr{TA|P(𝐗)}          (3) 

and that the distribution of the outcome given a potential 

treatment tP, Y(tP) is independent from treatment assignment 

given P(X): 

Pr{Y(tP)| TA, P(𝐗)} = Pr {Y(tP)|P(𝐗)}    (4) 

for any tP ∈  𝒯, where 𝒯 is a set of potential treatment values. 

Thus, by averaging Pr {Y(tP)|P(𝐗)} over the distribution of 

P(X), the distribution of the outcome of interest can be obtained: 

Pr{𝑌(𝑡𝑃)} = ∫ Pr{Y(tP)|TA = tP, θ} Pr(θ)dθ.     (5) 

   This integration can then be approximated parametrically as 

Pr𝛟{T(tP)|TA = tP}  stratified by the propensity score θ, 

where 𝛟 parameterizes the distribution. Thus, the distribution 

of Y(tP) can be approximated as the weighted average of the 

within strata outcome distribution: 

Pr{𝑌(𝑡𝑃)} ≈ ∑ Prϕĵ{Y(tP)|TA = tP} ∙ Wj
J
j=1        (6) 

where ϕĵ is the within strata estimate of unknown parameter 

𝛟 in strata j, and Wj is the relative weight of strata j. 𝛟 can 

then be estimated as 

�̂� = ∑ ϕĵ {Y(tP)|TA = tP, 𝐗} ∙ Wj
J
j=1         (7) 

where covariates X are included to control for variability of θ 

within strata. The average treatment effect is then a function of 

ϕ̂ ; in this case, the weighted treatment coefficient of the 

regression of the outcome variable Y(tP) on tP and all covariates, 

where weights are given by the sample relative weight nj/N.  

Imai and van Dyk (2004) verified through simulation and 

empirical analysis that stratification on the propensity score 

reduces bias of observed covariates by 16-95%, suggesting a 

superior performance over the direct non-stratified treatment 

estimation. 
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4.1. Methodological comparison through simulation 

   The performance of the propensity score methodology is 

tested against the OLS full-covariate model through Monte 

Carlo simulation. Two set of simulations are estimated, 

corresponding to home-based maintenance trips by car and by 

non-motorized means.      

    Following Rubin & Thomas (2000) and Imai and van Dyk 

(2004), exponential functions were used to specify two data 

generating processes (DGP), an additive model and a 

multiplicative model, with different levels of linearity. For the 

additive models, departing from Imai and van Dyk, the data 

generating process is of the form 

   Yi = 𝛿𝑖  𝑇𝑖
𝐴 + c1(𝜆) ∑ 𝝀𝑘𝑒𝑚𝑘𝑿𝑖𝑘𝐾

𝑘=1   (8) 

while for the multiplicative models, the data generating process 

is of the form 

 Yi = 𝛿𝑖 𝑇𝑖
𝐴 + c2(𝜆)𝑒∑ 𝜆𝑘𝑿𝑖𝑘

𝐾
𝑘=1   (9) 

where for the ith individual, Yi is the simulated outcome (e.g. 

home-based maintenance trip frequencies by mode), δi is the 

treatment effect, Ti
A is the assigned treatment, and λk is a vector 

of zero-mean Gaussian distributed coefficients for a vector of 

covariates Xi  of k dimensions.  The variance of λk is then used 

to control the level of linearity of each model. The component m 

in the additive model is a set of independently distributed 

variables that take values of -1 or +1 with equal probability. Each 

simulation was run with 1000 replications. In these applications 

the constants c1(𝜆) and c2(𝜆) are fixed to 1.  

   The degree of linearity of each model is measured by the 

average R2 value of the regression of each function on the set of 

covariates X based on a 1000 replications. For each DGP, three 

levels of linearity are considered. A highly linear model with 

average R2 ≈ .95, a moderately linear model with average R2 

≈ .85, and a moderately non-linear model average R2 ≈ .75. As 

in Rosenbaum & Rubin (1984) and Imai & van Dyk (2004), the 

simulations are conducted under the assumption that the true 

propensity score function in known. 

 

4.2. Defining the treatment of interest: A continuous 

index of urbanization 

   Urbanization level at the location of residence, 

measured as a continuous variable, was defined as the 

treatment variable of interest. In order to quantify 

urbanization level, a latent variable model was specified 

using confirmatory factor analysis (CFA). A 300m wide 

hexagon (150m from the center to any vertex) tessellation 

was used to subdivide the city area in regular spatial units. 

4.2.1. Defining the indicator variables 

   Guided by urban economics and planning theory, 

urbanization level is conceptualized as a latent construct 

that accounts for the observed spatial distribution of the 

city in terms of supply of goods and services, land use 

intensity, transport mobility and land prices. Indicators 

were selected based on the results of an exploratory factor 

analysis (EFA) conducted on a set of potential indicators 

theoretically associated with urbanization levels. Selected 

indicators were: (i) Commercial Kernel Density, (ii) 

Population Density, (iii) Transit Accessibility, and (iv) 

Land Prices. 

4.3. Survey design and characteristics 

  The main data source for this analysis was an online 

survey conducted in the city of Fukuoka, Japan. The 

survey was conducted in December 2013, through 

Macromill, Inc. a net research company with over 2.3 

million monitors all over Japan. The survey aimed at 

gathering four major types of information: (i) individual 

and household attributes, (ii) mobility biography (which 

includes relocation history and main modes of transport 

during different life stages, (iii) attitudes related to 

transport and residential location, and (iv) travel behavior. 

The data gathered corresponds to a large extent to relevant 

covariates largely cited in the residential self-selection 

literature as playing in a role in co-explaining residential 

location and/or travel behavior. The target population was 

adults living in Fukuoka City at the time of the survey, and 

the sampling method used was stratified random sampling, 

where the stratification criteria was household 

composition. 

   The outcome variables considered for this analysis were 

home-based maintenance trip frequencies by mode. 

Maintenance activities refer to those activities other than 

subsistence activities (work and school related activities) that 

need to be conducted in the course of daily life such as grocery 

shopping, visits to the doctor, going to the bank, and other 

personal business. 

 

4.4. Model Specification and results 

4.4.1. Urbanization index model 

   Following the explanation provided in Section 3.4., A 

CFA model was estimated. As a result of the multivariate 

non-normality condition of the indicator variables (i) all 

variables were introduced in their log form, and (ii) the 

robust maximum likelihood estimator was used. Goodness 
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of fit acceptable thresholds are guided by the values 

recommended by Hu & Bentler (1999) as follows: 

Standardized root mean square residual SRMR (≤0.08), 

comparative fit index CFI (≥0.95), Tucker-Lewis index 

TLI (≥0.95), and a  root mean square error of 

approximation (RMSEA) cut-off value of ≤ 0.05. 

   With 2 degrees of freedom, the Chi-square statistic is 

significant at the 0.01 level. This might suggest that the 

model does not reproduce the observed variances and 

covariances of the indicators well enough; nevertheless, 

Chi-square is inflated by sample size, thus tending to 

routinely reject large sample size solutions (Brown, 2006).     

Other indices not sensitive to sample size, however, 

suggest an acceptable model fit. RMSEA is 0.037, with a 

confidence interval of 0.028 and 0.046 at its lower and 

upper boundaries respectively. CFI and TLI are 0.999 and 

0.996 respectively, while the standardized root mean 

square residual (SRMR) is 0.005. The path diagram of the 

estimated latent variable is illustrated in Figure 2.    

 

Figure 2. Path diagram of "Urbanization Level" latent 

variable 

 

All estimated parameters were statistically significant at 

the 1% level. Factor loadings suggest that all indicators are 

strongly related with the latent factor urbanization level, 

especially the log of commercial density, whose total 

explained variance stands at 85.9%. Figure 3 illustrates the 

spatial distribution of the estimated urbanization level 

latent variable. 

 

Figure 3. Urbanization level map of Fukuoka city 

 

4.4.2. Measuring the performance of the propensity 

score stratification against OLS 

   As discussed in Section 4.1., for each of the 12 model 

specifications (3 additive models + 3 multiplicative models x 2 

outcome variables), treatment effect is estimated using a full-

covariate OLS, and propensity score stratification stratified on 

θ̂ into roughly equal sub-classes j, where  j= 3, 5 and 7 strata 

respectively. In addition all propensity score models are 

estimated with no covariates, and with the full set of covariates, 

totaling 72 models.  

   The performance of each model is compared against the full-

covariate OLS estimates, measured in terms of absolute bias 

where 

   𝐴𝐵𝑖𝑎𝑠̂ =
1

𝑅
∑ �̂�𝑅

𝑟=1 − 𝛿      (10) 

and mean squared error where 

𝑀𝑆�̂� =
1

𝑅
∑ (𝑅

𝑟=1 �̂� − 𝛿)2         (11) 

where �̂� is the estimated treatment effect and R is the number 

of replications. 

   In terms of treatment effects, performance comparison is 

conducted first under the assumption of a fixed treatment effect 

that is constant to all individuals, and second, under the 

assumption of a variable treatment effect defined as a function 

of another variable. In the variable treatment case the treatment 

parameter was defined as a function of car use habit, where for 

individual i 

𝛿i = 10−1(10 − H) δ𝑚            (15) 

where H is the car use habit index as measured by the Response 

Frequency Index method, and δm is equivalent to the constant 

treatment parameter for mode m. This is, however, an arbitrary 

function in order to illustrate the variable treatment case, but 

another function might have been used as well. 
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   Simulated results are shown in Table 7. Results are given in 

percentage bias change (or MSE change) relative to the OLS 

estimates. Positive values indicate that the model underperforms 

the benchmark OLS model (bias increases relative to OLS), 

while negative values suggest that the model outperforms the 

benchmark model (bias decreases relative to OLS). 

 

Table 7. Simulated changes in absolute bias and mean 

squared error compared against the OLS estimates for 

home-based maintenance trips by Car and NMM 

(Constant treatment) 
Constant Treatment Car Models NMM Models 

 5 strata 5 strata 

% Change in ABIAS N.C. A.C. N.C. A.C. 

Additive models     
Highly linear -1.89% -52.34% 13.69% -26.89% 
Moderately  linear 0.42% -51.25% 3.80% -27.67% 
Moderately non-linear -3.12% -52.90% 13.14% -27.09% 
Multiplicative models     
Highly linear 22.33% -41.93% -3.63% -34.58% 
Moderately  linear 5.59% -40.21% -6.26% -12.54% 
Moderately non-linear 6.65% -28.08% 0.13% -10.91% 

%Change in MSE N.C. A.C. N.C. A.C. 

Additive models     
Highly linear 13.61% -73.88% 23.96% -47.31% 
Moderately  linear 20.41% -72.30% 4.01% -48.76% 
Moderately non-linear 11.06% -74.36% 12.58% -47.31% 
Multiplicative models     
Highly linear 131.18% -70.69% 13.71% -49.44% 
Moderately  linear 9.11% -82.97% 7.41% -45.50% 
Moderately non-linear 2.47% -62.45% 16.79% -51.94% 
     
Variable Treatment Car Models NMM Models 

 5 strata 5 strata 

% Change in ABIAS N.C. A.C. N.C. A.C. 

Additive models     
Highly linear -22.48% -11.00% -22.46% -10.90% 
Moderately  linear -5.28% -30.05% -6.05% -31.68% 
Moderately non-linear -3.98% -48.47% -3.37% -49.34% 
Multiplicative models     
Highly linear -10.38% -27.72% 16.92% -33.12% 
Moderately  linear -0.26% -42.93% 12.46% -43.38% 
Moderately non-linear 7.74% -28.15% 28.87% -32.75% 

%Change in MSE N.C. N.C. N.C. A.C. 

Additive models     
Highly linear -39.72% -20.98% -39.70% -20.80% 
Moderately  linear 1.98% -57.34% -0.14% -59.00% 
Moderately non-linear 9.90% -73.25% 13.05% -72.74% 
Multiplicative models     
Highly linear 6.43% -51.12% 16.72% -71.60% 
Moderately  linear 1.95% -83.00% 45.23% -72.62% 
Moderately non-linear 1.31% -62.79% 100.0% -64.68% 

   

   Compared to the OLS estimates, a 5-strata model reduces 

absolute bias up to 53%, and mean square error up to 83% 

suggesting a superior performance. 

 

4.4.3. Empirical application to home-based 

maintenance trips 

   Having demonstrated the bias reduction potential of 

the propensity score approach, the method is applied to the 

Fukuoka dataset. In addition, a multi-scale analysis is 

conducted since the optimal scale of analysis is actually 

unknown. As illustrated in Figure 4, the first scale of 

analysis (Scale 1) is the same scale at which the 

urbanization level index was estimated, that is, a 300m 

diameter hexagon. The second and third scales take the 

unweighted average of the urbanization level of all units 

within a 1500 meter and 3000 meter radii respectively. The 

fourth scale of analysis assigns a weight to surroundings 

areas as a function of distance from each unit centroid via 

a kernel density function. Tables 10 summarizes the 

treatment effect estimates for full-covariate OLS against 

full-covariate 5-strata models at each spatial scale. 

 

Figure 4. Diagram of scale definitions for multi-scale 

analysis 

 

Table 10. Multi-scale analysis of urbanization effect on 

home-based maintenance trips against 5 Strata estimates 

(Full-covariate models) 

 Scale 1 Scale 2 
Model  OLS  5 Strata OLS  5 Strata 

Car trip 
frequency 
model 

β -0.201 -0.200 -0.145 -0.217 
t-Stat -4.794 -3.381 -3.191 -5.020 
%diff. -0.1% 50.0% 

NMM trip 
frequency 
model  

β 0.151 0.152 0.125 0.156 
t-Stat 2.595 2.604 1.924 2.710 
%diff. 0.4% 24.8% 

 Scale 3 Scale 4 
Model  OLS  5 Strata OLS  5 Strata 

Car trip 
frequency 
model 

β -0.127 -0.178 -0.131 -0.217 
t-Stat -2.477 -4.106 -3.273 -5.110 
%diff. 39.5% 65.7% 

NMM trip  
frequency 
model  

β 0.089 0.179 0.103 0.177 
t-Stat 1.215 3.230 1.746 3.025 
%diff. 101.0% 71.9% 

 

   For all models, at any scale the direction of the effects 

is as hypothesized, negative for car trips and positive for 

non-motorized modes. At Scale 1, OLS and propensity 

score treatment effect estimates are rather similar, with 

differences ranging from 0.4% to 6% However, at different 

spatial scales, while the propensity score estimates are 

rather robust, the OLS estimates deteriorate quickly with 

difference in estimates up to 101%. 

   Furthermore, in the NMM case, the t-statistics for the 

OLS estimates fall below the 5% threshold for all but the 

Scale 1 estimates, becoming insignificant at any 
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significance level for the Scale 3 estimates.  

 

5. Conclusions 

   In general, findings support the notion that the built 

environment has a significant effect on travel behavior, 

specifically, on trip frequency by mode, providing some 

empirical evidence to the claims of compact city advocates.  

Nevertheless, it is important to note in spite of the 

existence of a causal relation, residential location not only 

is a self-selecting process guided by household life-stage, 

lifestyle and preferences, but it’s at the same time 

constrained by the supply and demand dynamics of the 

real estate market. In that sense, a mismatch between 

supply and demand might hamper efforts to promote 

compact city paradigms.  Even for households that wish 

to move to the city center, rent costs might be prohibitively 

expensive, pushing households to more suburban areas 

where they can afford more space. In the case of Japanese 

cities, this problem is extenuated by lax urban control laws 

that allow development to expand even beyond the so 

called Urban Control Areas, thus promoting 

suburbanization, perhaps unintentionally. 
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