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Shared Autonomous Vehicles (SAV) threaten to disrupt legacy transportation such as private 

cars and railways through decreased cost and increased flexibility. The scale of the 

transportation shift to SAV is uncertain especially in specific contexts such as Suburban Tokyo. 

In this study, an agent-based transportation simulation is constructed of a Tokyo rail corridor 

that extends from the centre of Tokyo to its rural edges. This simulation incorporates a 

multinomial logit mode choice model estimated from the 2018 Tokyo Person Trip Survey and 

extends it to model SAVs as a possible mode choice. Multiple scenarios are constructed by 

varying pricing, fleet size, and choice utility of SAV mode choice, creating a range of projections 

that explore the future size of SAV market share. The model estimates a relatively low projected 

market share, around 0.9% and 4.25% for Moderate and High Adoption scenarios respectively. 

The effect of lower fares or increased fleet size is determined to be weak, with the most 

optimistic SAV mode share being 5.98% of overall trips. This low market share means that SAVs 

are unlikely to disrupt suburban rail lines in greater Tokyo and may remain a niche transport 

choice like taxis today. This analysis is furthered by exploring how different built environments 

influences SAV adoption. It is found that SAV trips have a bias towards denser, more urban 

areas and thus compete with transit in those dense areas more than conventional car trips in 

auto-dependent suburbs. 

 

1. Introduction 

   Billions of dollars, yen, and yuan have 

been invested into the development of 

self-driving or autonomous vehicles. The 

prospect of twining them with rideshare 

applications to create a fleet of low-cost 

shared taxis is known as Shared Autonomous 

Vehicles (SAV). These SAVs have been hyped 

to revolutionize travel as we know it, since 

they could reduce taxi costs by 80%1),and 

eliminate the need for many to rely on driving 

and owning a car. However, these may have a 

counterintuitive outcome in transit-oriented 

areas, as SAVs may capture market share 

from transit instead of private cars. Exploring 

the scale of travel market disruption on the 

transit focused urban sprawl of suburban 

Tokyo is a vital endeavor, especially in 

quantifying the possible loss of ridership for 

legacy rail lines. This is made more acute as 

Tokyo is both transit-heavy as well as having 

a great deal of uneven car-friendly urban 

sprawl2). The unique structure of the 

suburban rail corridor exemplifies this urban 

archetype, with these rail lines passing rice 

paddies and forests in between stations 

surrounded by multi-story malls. The 

objective of this study is to gain a clearer 

picture of the scale of SAV adoption in this 

unique built environment, or in a question:  

1. What is the projected market share 

of Shared Autonomous Vehicles 

across a Greater Tokyo rail corridor, 

explicitly considering the differences 

in built environment? 

And secondarily: 

2. What is the projected shift away 

from rail transit and other modes, 

explicitly considering the differences 

in built environment? 



   The complexity of travel mode choice and 

traffic/transit trips can be simulated using an 

agent-based simulation (ABM), which will be 

detailed later in this summary. The thesis is 

composed of a literature review of different 

forecasts of SAV impacts across the world and 

using different models. After this review, a 

summary of the methodology and the 

simulation model used in the study is detailed 

before the results and discussion section.  

 

2. Literature Review  

   SAV research is an expanding field, with 

studies using myriad techniques to explore a 

variety of impacts. A detailed review by 

Narayanan et al.3) highlights the use of 

surveys, optimization programming, and 

simulation-based studies to explore the 

impact of SAV on mode choice, land use, 

travel demand, emissions and many other 

factors. A complex outcome that has yet to be 

explored are questions of mode choice, as that 

involves the interplay between individual 

choices, SAV supply, and the characteristics of 

the transportation network. Agent based 

simulation (ABM) is a modelling method that 

recreates a system by simulating the 

interactions of many individual agents and is 

appropriate for the complexity of SAV 

simulation. The MATSim simulation 

framework developed by Maciejewski et al. 4) 

is the most popular for the simulation of SAV 

transportation models5) and is selected for 

this study. MATSim has been used by 

Fagnant & Kockelman6) , Gurumurthy et al. 7), 

Kamijo et al. 8) and many others to predict a 

rise in total Vehicle Kilometres Traveled 

(VKT) if SAVs replace private cars. A 

consensus of the near-term impact and 

competition with transit is less clear, with Oh 

et al. 9) predicting an adoption rate of up to 

18.8% of all trips in Singapore, while a 

forecast by Gurumurthy et al7) in Greater 

Chicago predicts a lower adoption rate of ~3%. 

SAV adoption seems quite dependent on the 

built environment, with denser, more 

transit-heavy areas having a high adoption 

rate and sparser, auto-dependent areas 

showing less disruption. Within Japanese 

studies the lack of clarity remains, with Mori 

et al.10) predicting a market share of 4% of all 

trips in Nagoya, while Ishibashi & Akiyama11) 

observing an SAV adoption rate of up to ~33% 

in Central Tokyo. Most of the above studies 

utilize an individual travel mode choice model 

built from survey data, guiding the individual 

agents’ choices for an ABM or similar type of 

transportation system model. Building on 

these best practices, this study uses the 

MATSim framework with an external Mode 

Choice Model to create a simulation of a 

Tokyo rail corridor, extending from the CBD 

station of Shinjuku to the suburbs and rural 

areas at Tokyo’s periphery.  

 

3. Model Formulation & Methodology 

   The simulation model is built in three 

steps: the analysis and archetyping of the 

Odakyu rail Corridor, the estimation of a 

Multinomial Logit model as the individual 

mode choice model, and the construction of 

the transportation system in MATSim and 

the calibration of the model. MATSim or 

Multi-Agent Transportation Simulation is an 

ABM that models the travel behaviour of 

individual agents across one day of a 

transportation network. It uses an iterative 

approach, improving agent’s daily plans 

based on previous simulation outcomes, 

optimizing individual plans with overall 

traffic and system usage. In this study, the 

outputs of each simulation iteration are 

Figure 1. Map of Odakyu Corridor by Urban 

Typology 



scored and replanned by a Multinomial Logit 

(MNL) model and then reinputted into the 

MATSim framework for individual route 

assignment and traffic simulation. This MNL 

model is first trained on actual travel modes 

then is extended to include SAV in its set of 

choices. Using this completed model, a set of 

possible scenarios is then simulated to give a 

range of potential SAV adoptions, as well as 

explore how key factors may influence this 

adoption rate.  

   To begin, a more holistic approach of 

understanding and quantifying the unique 

built environment across Greater Tokyo rail 

corridor is needed. This study focuses on a 

5km range around the Odakyu-Odawara 

Railway Corridor, which goes from Shinjuku 

station (the busiest station in the world) to 

key commuter stations, going through sparse 

suburbs and forests and farms along the way. 

This nonlinear development can’t be 

measured by a single indicator alone, so this 

study uses Principal Component Analysis to 

combine several variables into a single 

indicator that is an approximate measure of 

Urbanisation. This Urbanisation Index is 

calculated for 1km x 1km census blocks across 

the scope and is built by using indicators 

previously known to have great influence on 

travel behaviour12). These include Population 

Density, Intersection Density, Bus Stop 

density, % of area zoned for development 

and % zoned for high density development, 

No. of commercial addresses within an area, 

and distance from closest station, hub (station 

servicing two lines or more), and CBD 

(Shinjuku). Once every block was scored with 

the Urbanisation Index, they were classified 

using Jenks Natural Break Algorithm and 

qualitative methods into four distinct urban 

archetypes: 

   1. CBD, or blocks around Central Business 

Districts 

   2. Urban, or blocks generally within 

central Tokyo or at hub stations 

   3. Suburban, or blocks generally outside 

Central Tokyo 

   4. Rural, or blocks generally farmland or 

mountainous areas with low population   

These are displayed in Figure 1. 

  A Multinomial Logit (MNL) Model is a 

statistical model that predicts the probability 

an individual will choose among multiple 

distinct choices, in this case between walking, 

biking, driving a car, taking a ride in a car, 

and taking rail transit. It is trained on data 

from the 2018 Tokyo Person Trip Survey, 

which contains information about the actual 

daily trips of ~1% of the corridor’s population. 

The model is based on a set of choice-specific 

utility equations, where the travel time, cost 

and other factors are used to determine which 

choice would have the highest utility, and 

thus the most likely choice. While a variety of 

factors were explored to create this model, 

keeping it limited to only travel time, cost, 

Urbanisation Index at the trips origin, and a 

random component reflecting unobserved 

baseline preferences (ASC) kept the balance 

between simplicity and predictive power 
 

Figure 2. Mode Share of Observed vs 

Simulated Trips 



   To model choice when SAVs are an option, 

an assumption is made that the utility 

equation is similar to that of current taxi, the 

most similar current mode, albeit with a 

reduced price due to zero wage cost. To model 

a situation where the low cost of SAVs shifts 

the baseline preference of individuals, the 

ASC or Alternative Specific Constants of 

taking a car as a passenger (Ride) and driving 

one’s own car (Car) are chosen for a Moderate 

Adoption, and High Adoption scenario. The 

values of the final model are listed in Table 2. 

 

Table 1. Results of Multinomial model 

parameter estimation 

Choice Attribute Estimate t-stat 

Alternative Specific 
Constants 

  

ASC – Walk 0 (-) 

ASC – Bike -1.849 (-52.79) 

ASC – Car Driver -1.441 (-30.79) 

ASC – Car Passenger -3.106 (-53.99) 

ASC – Taxi -6.852 (-41.04) 

ASC – Rail -2.915 (-39.87) 

Travel Time (/hr)   

TT – Walk -9.601 (-71.56) 

TT – Bike -6.205 (-52.70) 

TT – Car Driver -5.685 (-28.21) 

TT – Car Passenger -7.803 (-42.81) 

TT – Taxi -5.349 (-5.49) 

In Vehicle TT – Rail -0.563 (-7.21) 

Access TT – Rail -2.893 (-31.68) 

Travel Cost (/JPY)   

TC – Car Driver -0.00294 (-5.31) 

TC – Taxi -0.00023 (-2.86) 

TC – Rail -0.00141 (-9.07) 

Urbanisation Index   

UI – Car Driver -0.364 (-39.30) 

UI – Car Passenger -0.150 (-11.56) 

UI – Taxi 0.136 (6.15) 

UI – Rail 0.051 (6.21) 

Sample size 35923 

ρ2 0.519 

Adjusted ρ2 0.518 

   The transportation network of the 

MATSim simulation was built by collecting 

data on the detailed road network from 

OpenStreetMap, and on the rail network and 

schedule from the Public Transportation 

Open Data Centre13). With the transportation 

demand taken from the Tokyo PT Survey, and 

the MNL model for mode choice, a baseline 

model was constructed. While MATSim has 

open-source modules for mode choice models, 

SAV modelling, and complex transit systems, 

Figure 3. SAV Mode Percentage across All 

Scenarios 

Table 2. SAV Mode Share Across Different 

Adoption Scenarios 



incorporating them together provided 

difficulties in scope and complexity, with the 

omission of bus transit, and limiting out of 

scope trips to primary roads only, etc. Despite 

this, the model was calibrated to have a 

minimal amount of error when determining 

individuals’ choice of travel mode, as seen in 

Figure 2. 

   Using the baseline model as a starting 

point, the taxi choice is replaced by the SAV 

choice with its new utility and cost 

assumptions to forecast the new modal split 

when SAVs are introduced. To explore a range 

of possibilities, different prices and fleet size 

(vehicle supply) scenarios are simulated, 

along with three sets of utility assumptions 

mentioned above: 

1. Status Quo: Same parameter as taxi 

2. Moderate Adoption: ASC similar to 

Car passengers 

3. High Adoption: ASC similar to Car 

Drivers 

Simulating each combination of price, fleet 

size, and base values toward shared mobility 

gives a good range of possible market share of 

Figure 5. Mode Share of All Modes by Urban 

Typology & Adoption Scenario 

Figure 4. Rail Transit Mode Percentage across 

All Scenarios 



SAVs and its subsequent impact on transit 

use. 

 

4. Results 

  The observed SAV market share of every 

scenario is listed in Figure 3. As observed the 

adoption rate is relatively low even in the 

High Adoption scenarios, only going up to 

~6% in very optimistic conditions. Examining 

the impact on transit in Figure 4, it is 

observed that there is only a slight decrease 

in ridership, amounting to around 5% 

decrease in transit use. Even more 

interesting are the results when broken down 

by urban typology, as seen in Figure 5. 

   When examining the operations of the 

SAV fleet, a complicated picture of financial 

and operational health emerges. Showcased 

in Figure 6, which breaks down the financials 

of the Moderate Adoption scenarios, profit or 

loss is dependent on the pricing of fares and 

fleet coverage.    

 

5. Discussion 

   SAV Adoption was quite low, ranging in 

the single digits and even <1% for the Status 

Quo scenarios. These status quo scenarios 

have a very high baseline bias against SAVs, 

with other factors such as price and 

availability having very little effect. This may 

be due to current values to taking taxis, 

treating shared mobility as an option taken 

only in special circumstances such as 

overnight or a business trip. Analysing 

Moderate and High adoption scenarios, SAV 

market share does increase markedly to 

decrease in fare price, albeit from a low base. 

This is mirrored in the opposite yet relatively 

minor change in rail transit mode share, 

displayed in Figure 4. This shift of trip mode 

choice is larger than for car to SAV trips, 

hinting that policies and programs to adopt 

SAVs may do more harm to transit than good. 

With Status Quo and Moderate Adoption 

scenarios having almost negligible changes 

due to pricing, it may not be effective to use 

pricing or fleet size policy to influence car-to 

SAV shifts. Examining figure 6, scenarios 

where the fare price was priced at cost 

(Subsidized) run at a loss, further 

highlighting the weakness of a pricing policy. 

   Separating the results by urban typology 

in Figure 5, the trend for higher SAV adoption 

in denser areas is apparent. This is most 

likely due to the network effects and vehicle 

density being able to meet demand with low 

wait times and predictable service. SAV 

adoption could have a strong yet localized 

disruptive effect on travel from CBDs, with 

High Adoption market share going up to 7%. 

The largest modal shift to SAVs is from rail 

transit, largely since both share a bias 

towards density. Yet this too is limited, with a 

Figure 6. Financial Overview of Moderate 

Adoption Scenarios 



decrease in the most SAV optimistic scenario 

amounting to a ~5-6% of transit ridership. 

The shift is minimal and most likely will not 

jeopardize the viability of legacy rail 

infrastructure.  

   This result falls in between the results by 

other researchers, with the closest being Mori 

et al.10) 4% SAV market share when 

simulating Nagoya. The result of Oh et al. of 

18.8% of trips in Singapore9) and Gurumurthy 

et al of 3% in Chicago7) fall within the 

observed pattern of SAV usage increasing 

towards denser built environments. It seems 

that in the suburban Tokyo environment the 

twin systems of rail and car dependence are 

so strong, that SAVs will have minimal 

impact and may require little regulation. 

SAVs might have a micro-impact around 

stations or other urban choke points and need 

a necessary regulation to prevent localized 

traffic. 

   Limitations include the small simulated 

population ratio of model, with only ~1% of 

the population simulated. The difficulty in 

computation, and simulation construction 

necessitated the low simulated population, 

and other shortcuts such as the omission of 

buses, omission of long-term trends of 

demographic decrease or decrease in 

car-ownership, and omission of Private 

Autonomous Vehicles (PAV). 

   Ultimately, SAVs are predicted to have a 

quite low adoption rate, and a small effect on 

transit necessitating no need for regulation. 

Commuter railways will still reign over all 

other travel modes in Greater Tokyo. The 

hype of autonomous mobility should instead 

be focused on Private Autonomous Vehicles, 

with next steps being to extend the 

simulation of this study by incorporating 

PAVs.  
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