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The emergence of autonomous vehicles is expected to shape the urban transportation system in various ways. 

In this study, a large-scale agent-based disaggregate simulation model, MATSim, is employed to measure the 

impact of autonomous vehicles on accessibility changes. This study used disaggregate spatial data from the 

Gunma Prefecture Person Trip Survey as the initial travel demand input for the model. Two new autonomous 

transport modes, shared autonomous vehicle (SAV) and private autonomous vehicle (PAV), are included in the 

simulation, in addition to the existing human-driven private vehicles. A scenario analysis is conducted using 

fleet size of SAV, ownership of PAV, operation cost, value of time changes as the key variables in the scenario 

setting. Based on the final travel demand results, a Hansen-type accessibility analysis is conducted, providing 

quantitative evidence to measure the potential impact of autonomous vehicles on accessibility changes in the 

context of Japanese regional cities. This research found a considerable market share of AVs in scenarios with 

positive assumptions, and an overall accessibility increase in the scenario where PAVs were introduced. 

Particularly suburban areas seemed to enjoy more accessibility gains which might result in further urban sprawl 

in future. 

 

1. Introduction 

With the rapid development of vehicle to infrastructure 

communication and infrastructure to vehicle communication 

technologies nowadays, the automobile industry has high 

expectations regarding autonomous vehicles (AVs). Although 

fully autonomous vehicles (SAE Level 51)) are not yet 

operational, automobile manufacturers are committed to this 

task and many have publicized plans to introduce fully 

autonomous vehicle by 2020. 

As an extensive research field nowadays, many academic 

papers on the implication of AVs have been published, with most 

research efforts focusing on the effects of the new technology on 

both vehicle characteristics and users’ travel behavior. Such 

changes include more efficient use of road capacity and level-of-

service with smoother acceleration and deceleration, a shift from 

human driven vehicle ownership to AV ownership, higher 

tolerance to distance traveled, shorter in-vehicle times, but also 

an increase in vehicle kilometers traveled, and also economical 

saving as drivers aren’t needed anymore. 

Given the benefits listed above, AVs have been hailed as the 

future daily mobility tool, and thus it is expected that it will not 

only impact transportation systems but also shape the urban 

land-use system in various ways. From a regional perspective, 

impacts on accessibility might influence people’s travel pattern 

and even residential choice in a longer time span2). 

In considering the concerns above, this research aims to 

evaluate AV implications on short-term travel behaviors and 

regional accessibility changes via simulation method. 

2. Methodology & Data 

(1) Agent-based Simulation: MATSim 

In this paper, an activity-based agent-based disaggregated 

simulation model, considered one of the most behaviorally 

realistic simulation models nowadays, is used. Specifically, a the 

large-scale open-source simulation platform, MATSim3) is 

employed.  

This toolkit adopts an activity-based agent-based iterative 

loop to solve the traffic assignment problem, as shown in Fig.1.  

 

Fig.1 MATSim iterative loop 

 

The loop starts with an initial travel demand in the form of 

daily activity chains for every individual. Later in the mobsim 
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phase, the activity chain is loaded and assigned to the road 

network. After the end of one simulation day, a score is 

calculated for each agent’s activity chains (plans). Then in the 

replanning phase, every agent has to choose one plan to execute 

for the next iteration. The collection of plans is generated 

(mutated) from their previous plans.  

To be specific, the scoring function is formulated following 

Charypar and Nagel4), where the utility of a plan 𝑆𝑝𝑙𝑎𝑛  is 

computed as the sum of the utility of all activities 𝑆𝑎𝑐𝑡,𝑞 plus 

the sum of all travel (dis)utilities 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞): 

       𝑆𝑝𝑙𝑎𝑛 = ∑ 𝑆𝑎𝑐𝑡,𝑞

𝑁−1

𝑞0

+  ∑ 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞)

𝑁−1

𝑞=0

(1) 

Where N denotes the number of activities. q is the activity and 

mode(q) refers to the travel mode using by the agent following 

activity q. 

This algorithm makes it more authentic to simulate traffic 

assignment and people’s choice process, which is important to 

improve prediction validity. A more detailed description of the 

mechanics refers to Nagel et al.5): 

 

(2) Data collection  

Several data sources are used in this study. The Gunma 

Person Trip Survey data in 2015 (PT data) is used as the initial 

travel demand input in MATSim.  

The survey provides one-day activity chains including trip 

purpose, location, mode and departure times. Sample size is 

64,500 households in Gunma prefecture plus Ashikaga City in 

Tochigi prefecture. 

Train and bus are excluded from the choice set because of 

their low modal share and intractability. The effective sample 

size was 53,814, which is around 2.53% of the whole target 

population. 

TelPOINT Pack DB 2016 is used to get facilities data used as 

the input for the accessibility computation. The data records 

facility types and geographical coordinates for 23 million 

facilities across Japan. 

Network data is extracted from OpenStreetMap6). The study 

area bounding box covers totally 13,680km2.  

 

(3) Simulation settings 

a) Network loading settings and traffic behavior 

This study adopts with the MATSim’s default traffic flow 

model: QSim7) to simulate network loading part in the iterative 

loop. Basically, when vehicles enter a road segment, they are 

inserted into the tail of the queue of the road. The outflow speed 

is distinctive to each road and being specified by the capacity 

attribution. 

In this study, both private autonomous vehicle (PAV) and 

shared autonomous vehicle (SAV) are added as new transport 

mode alternatives, competing with human-driven private 

vehicles.  

HVs and PAVs are exclusive to one certain agent, namely 

they will not be shared with other agents. SAVs basically follow 

the behavior of current taxis where ride-sharing is not considered.  

The SAV dispatching follows a rule-based heuristic, namely, 

demand-supply balancing. It is a strategy that dispatches the 

nearest idle taxi in oversupply situations and dispatches the taxi 

that just became idle, to the nearest request in undersupply 

situations. Refer to Maciejewski et al.8) for more details.  

 

b) Scoring settings and mode choice set 

In this work, the travel disutility for leg q is given as: 

𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞) = 𝐶𝑚𝑜𝑑𝑒(𝑞) + 𝛽𝑚 × 𝑚𝑞 + 

                          𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞) × 𝑡𝑡𝑟𝑎𝑣,𝑞                      (2) 

Where, 𝐶𝑚𝑜𝑑𝑒(𝑞)  is a mode-specific constant.  𝛽𝑚  is the 

marginal utility of money. 𝑚𝑞 is the change in monetary budget 

caused by fares, or tolls for the complete leg. 𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞) is 

the direct marginal utility of time spent traveling by mode. 

𝑡𝑡𝑟𝑎𝑣,𝑞 is the travel time between activity locations q and q+1. 

In SAV’s case, the waiting time is included in 𝑡𝑡𝑟𝑎𝑣,𝑞. 

The parameters are calibrated using the PT data for a more 

realistic representation for the replanning and also accessibility 

computation.  

Driver and passenger mode are separated for the car mode in 

the PT data since these two are assumed to differ in marginal 

utility of time. And on the basis of the separation, passenger 

mode is further divided into two types: “passenger with car ∩ 

with license”and “passenger with no car∪no license” in attempt 

to distinguish whether the agent chooses to be a passenger 

because he or she has to or not.     

SAV and PAV parameters defined in the simulation are 

modified on the basis of the Car (passenger with car ∩ with 

license) coefficients for value of time variable. The constant is 

reference to Car (passenger with car ∩ with license) and car 

(driver) mode, respectively.  

The basic idea behind this ad-hoc approach is that given 

no observational data is available, parameters of AV must be 

proxied with an existing mode. The willingness to choose the 

car (passenger with car ∩ with license) resembles the most 

with AV, because the trip-maker most likely chooses to be a 

passenger on his or her own initiative (not because he or she 
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doesn't own a car or license), to avoid the driving burden in 

both of these two modes presumably.  

On the basis of the rules set above, the marginal utility of each 

mode is calibrated on the basis of a Multinomial logit mode 

choice model. Travel time of car and walk mode are calculated 

using Google Distance Matrix API, with the input of coordinates 

of OD pairs, where time of day is set following the reported 

departure time in the PT survey; travel time of bike mode is 

calculated from the ratio of walk distance and bike speed, which 

is set to 9km/h; travel cost of car is set to 6.8yen/km, considering 

the average fuel consumption in Japan is 21.9 km/L9), and 

average gasoline price (regular) in Gunma is 150 yen/L10). The 

calibration results are shown in Table 1. 

 

Table 1 Multinomial Logit model calibration results for mode 

choices 

Variable name Coefficient 
t 

statistic 

Car (passenger with no car∪no license) constant -3.453 -129.96 

Car (passenger with car ∩ with license) constant -4.599 -153.75 

Bike constant -1.416 -55.27 

Walk constant -0.708 -28.33 

Travel cost/yen -0.00424 -6.93 

Travel time of car (driver)/h -2.824 -7.65 

Travel time of car (passenger with no car∪no 

license)/h 
-5.631 -14.70 

Travel time of car (passenger with car ∩ with 

license)/h 
-2.548 -6.64 

Travel time of bike/h -3.221 -22.18 

Travel time of walk/h -8.058 -68.417 

Goodness of fit 

LL(0) -156087.7 

LL(β) -57356.3 

-2[LL(0)- LL(β)] 197462.8 

ρ2 0.633 

Adjusted ρ2 0.632 

 

c) Replanning settings 

In application, the plan in the next iteration is generated with 

two operators: mutation and selection. Mutation operator 

modifies a certain component in previously executed plan, and 

adopted this modified (mutated) plan for the next iteration. Three 

types of mutation operator, namely Reroute Mutator, Time 

Allocation Mutator, Subtour Mode Choice Mutator, are used in 

this study. The mutators suggest a mutation in route choice, 

departure time choice and mode choice, respectively.  

As for the selector part, to account for stochasticity in 

variations in agents’ behavior, this study uses MNL model as the 

plan selection approach. 

In this study, the share of agents to execute Reroute mutator, 

Time allocation mutator, Subtour mode mutator and MNL 

selector is 0.05, 0.1, 0.15 and 0.7, respectively. 

 

(4) Accessibility computation 

In this study, an economically interpretable accessibility 

assessment based on Hansen11) is adopted as follows: 

                            𝐴𝑙 = 𝑙𝑛 ∑ 𝑒𝑉𝑙𝑘

𝑘
                            (3) 

Where k denotes all possible destinations and 𝑉𝑙𝑘 equals the 

disutility (marginal utility × travel time + constant) of traveling 

from location l to destination k. The logsum term of exponentials 

can be interpreted as the expected maximum utility12). The 

marginal utility is exactly the aforementioned  𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞) , 

and the travel time of each link is acquired after simulation 

converges. 

 

(5) Scenario settings 

Given the uncertainty associated with the future, a scenario 

analysis with different degrees in vehicle characteristics and 

travel behavior changes is used in this research. Fleet size of PAV 

and SAV, operation cost, value of time change is considered key 

variables in the scenario setting.  

There are several studies providing insights on the setting of 

these key variables. Johnson and Walker13) predict that shared, 

electric autonomous vehicles will cost around 35 eurocents per 

mile (29yen/km) in 2035. And Stephens et al.14) argue a $0.40-

$0.60 per mile (27-41yen/km) in the American context. 

Compared to the human-driven cost to date of about $2.00 per 

mile (136yen/km, NY), a discount around 20%-40% with 

current taxi fare in Japan is assumed for the operation cost of 

SAV. In terms of fleet size of autonomous vehicles, there are few 

references available, especially for SAV: Fagnant et al15),16) 

employed MATSim to test the optimized fleet size with a rule 

that generates a new SAV for every traveler who has been 

waiting for at least 10 min after sending the request in their 

warming-up simulation. They found that 1,977 SAVs meet the 

demand of 56,324 agents (3.51% of the demand size) and 1,688 

SAV meet it for the 60,551 case (2.78% of the demand size), 

respectively. More generally, Bansal and Kockelman17) forecast 

Level-4 automation market penetration would be 28.6% in 2035, 
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using a binary logit model and Monte-Carlo simulation based on 

a state preference (SP) survey. As for the change of in-vehicle 

value of time, to the best of our knowledge there is no quantified 

evidence so far.  

Based on the above, the scenarios are set as below (Table 2):   

 

Table 2 Scenario definitions 

 

Scenario 

PAV 

ownership 

(of agents’ 

number) 

SAV fleet 

size (of 

agents’ 

number) 

Value of 

travel time 

for AV  

(of current 

passengers’) 

Fare of 

SAV (of 

current 

taxi’s 

fare) 

base 
Only HV, bike and walk applied, where parameters are 

set exactly as the calibration results. 

1 10%  2%  70%  60%  

2 30%  5%  40%  20%  

3 40%  8%  10%  10%  

4 50%  10%  10%  5%  

5 None 5%  40%  20%  

Note: the current taxi fare refers to Gunma Prefecture taxi 

pricing pattern (small car), with start fare of 710yen for the first 

2000m and 90yen per 301m hereafter.   

 

3. Simulation result 

After 70 iterations for each scenario, converged simulation 

results are derived from data processing as below: 

 

(1) Modal split result 

As Fig. 2 shows, the base scenario approximates the observed 

mode share in the Gunma PT data.  

 

Fig.2 Mode shift result 

 

For the PAV mode, in Scenarios 1-4, nearly all the people who 

own a PAV prefer to use it in their daily activities, showing that 

only the acquisition cost behind the PAV ownership choice 

might be the largest barrier against usage. The lower travel time 

parameter and no tour constraint might explain this tendency. 

Value of travel time and SAV fare compositely affect the SAV 

share along with the fleet size. A potential extra cost of waiting 

time and distance-based fare discourage the agents for using 

SAV presumably.  

Nevertheless, as a whole, the results of Scenarios 2-5 still 

indicate a considerable market penetration for SAV given 

relatively optimistic settings, and hence a promising potential 

niche market. 

 

(2) Travel distance  

Total daily travel distance (or Vehicle Kilometer Traveled, 

VKT) for each scenario is shown in Table 4.  

 

Table 4 Total daily travel distance 

 

Scenario Total daily travel distance 
Ratio change  

versus the base   

Base  8.340×105km - 

1 8.369×105km +0.35% 

2 8.779×105km +5.26% 

3 9.001×105km +7.93% 

4  9.123×105km +9.39% 

5 8.756×105km +4.99% 

 

An increase of total VKT is observed with the SAV 

introduction. Hence it might result in more traffic congestion in 

the future all else equal. Nevertheless, the level of increase seems 

to be not that high considering the potential AV benefits upon 

road capacity. Further studies could make more credible results 

in this issue.  

 

(3) Accessibility analysis 

The accessibility analysis simulation area is shown in Fig.3. 

Fig.4 shows the HV accessibility result of the base scenario. It 

can be observed that the result matches the developing level of 

Gunma. In large cities such as Takasaki and Maebashi, the 

accessibility is clearly higher than other remote places. 

Fig.5-Fig.8 depict the PAV accessibility changes against the 

base scenario (HV) for the 4 scenarios with PAV applied. For 

these scenarios, they are deliberately plotted in the exact same 

scale so as to be comparable. The black box in the legend in the 

left indicates the value range for each scenario. 
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Fig.3 Accessibility analysis area (Source: OpenStreetMap)     

 

 

Fig.4 Accessibility plot of base scenario (HV) 

 

 

Fig.5 Accessibility changes plot of Scenario 1 (PAV) 

 

It is assumed here that the decrease of value of travel time 

mainly accounts for the accessibility gains. The accessibility 

increases in particularly remote areas will likely encourage 

people to travel further and might promote further 

suburbanization in the future. Every evolution of mobility in 

human history resulted into an expansion of human activity area. 

The spreading of automobiles 100 years ago sparked aggressive 

urban sprawl in the subsequent decades.  

 

Fig.6 Accessibility changes plot of Scenario 2 (PAV) 

 

Fig.7 Accessibility changes plot of Scenario 3 (PAV) 

 

Fig.8 Accessibility changes plot of Scenario 4 (PAV) 

 

As such, the findings presented here should serve as a 

warning among planners and governments of potential risks of 

these new technologies and further offer some insights in 

specific urban policies. 

 

4.Limitation & Future work 

Some limitations need to be highlighted: first of all, this study 
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uses the current travel demand data as the input for the 

simulation and does not consider new travel demand generation 

or destination choice changes in the replanning. In this case, the 

induced trips and potentially longer distance with AVs cannot be 

captured, which is probably another important factor to 

influence modal shift. In order to address this limitation, 

generating a synthetic population and building a model to 

simulate travel patterns and OD matrix altogether is necessary. 

Besides, modeling of vehicle ownership is necessary to improve 

the simulation interpretability and forecast reliability. 

In addition, the mode choice calibration is based on current 

choice preferences and might be a source of error as well. 

Conducting a SP survey to capture attitudes on the unexisting 

modes would be helpful. 

Also, the method for computing accessibility of shared 

mobility modes is of significance in order that a more 

comprehensive assessment could be conducted thus providing 

more substantive evidence. Other activity type such as 

employment are pending to be involved in accessibility analysis. 

Finally, as a forecast research, the author is fully aware that 

due to not only the uncertainty of future development but also 

those procedures aimed to adapt the simulation model into the 

AV context, any attempt to predict future implications of AVs 

should be understood as mapping potential outcomes to further 

inform design and implementation. 
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